Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kwon Sook Park & Seiyong Kim, 2018. "Utilising Unused Energy Resources for Sustainable Heating and Cooling System in Buildings: A Case Study of Geothermal Energy and Water Sources in a University," Energies, MDPI, vol. 11(7), pages 1-8, July.
- Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
- Thorsten Agemar & Josef Weber & Inga S. Moeck, 2018. "Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook," Energies, MDPI, vol. 11(2), pages 1-17, February.
- Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
- Schweiger, Gerald & Heimrath, Richard & Falay, Basak & O'Donovan, Keith & Nageler, Peter & Pertschy, Reinhard & Engel, Georg & Streicher, Wolfgang & Leusbrock, Ingo, 2018. "District energy systems: Modelling paradigms and general-purpose tools," Energy, Elsevier, vol. 164(C), pages 1326-1340.
- Lee, C.K. & Lam, H.N., 2013. "A simplified model of energy pile for ground-source heat pump systems," Energy, Elsevier, vol. 55(C), pages 838-845.
- Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
- Suryatriyastuti, M.E. & Mroueh, H. & Burlon, S., 2012. "Understanding the temperature-induced mechanical behaviour of energy pile foundations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3344-3354.
- Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
- Eguaras-Martínez, María & Vidaurre-Arbizu, Marina & Martín-Gómez, César, 2014. "Simulation and evaluation of Building Information Modeling in a real pilot site," Applied Energy, Elsevier, vol. 114(C), pages 475-484.
- Lazzari, Stefano & Priarone, Antonella & Zanchini, Enzo, 2010. "Long-term performance of BHE (borehole heat exchanger) fields with negligible groundwater movement," Energy, Elsevier, vol. 35(12), pages 4966-4974.
- Park, Hyunku & Lee, Seung-Rae & Yoon, Seok & Choi, Jung-Chan, 2013. "Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation," Applied Energy, Elsevier, vol. 103(C), pages 12-24.
- Sung, Chihun & Park, Sangwoo & Lee, Seokjae & Oh, Kwanggeun & Choi, Hangseok, 2018. "Thermo-mechanical behavior of cast-in-place energy piles," Energy, Elsevier, vol. 161(C), pages 920-938.
- Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
- Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.
- Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
- Aydın, Murat & Sisman, Altug, 2015. "Experimental and computational investigation of multi U-tube boreholes," Applied Energy, Elsevier, vol. 145(C), pages 163-171.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
- Abubakar Kawuwa Sani & Rao Martand Singh, 2021. "Long-Term Thermal Performance of Group of Energy Piles in Unsaturated Soils under Cyclic Thermal Loading," Energies, MDPI, vol. 14(14), pages 1-28, July.
- Chun-Bao Li & Gao-Jie Li & Ran-Gang Yu & Jing Li & Xiao-Song Ma, 2020. "Study on Bearing Capacity of Tank Foundation with Alternatively Arranged Vortex-Compression Nodular Piles," Energies, MDPI, vol. 13(20), pages 1-18, October.
- Mohammad Shakerin & Vilde Eikeskog & Yantong Li & Trond Thorgeir Harsem & Natasa Nord & Haoran Li, 2022. "Investigation of Combined Heating and Cooling Systems with Short- and Long-Term Storages," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
- Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).
- Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
- Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
- Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
- Park, Sangwoo & Lee, Seokjae & Sung, Chihun & Choi, Hangseok, 2021. "Applicability evaluation of cast-in-place energy piles based on two-year heating and cooling operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
- Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
- Zhao, Yong Zhi & Shi, Zhenming & Ai, Zhi Yong, 2024. "Evolution of mechanical and thermal behaviors of energy piles considering soil consolidation," Applied Energy, Elsevier, vol. 361(C).
- Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.
- Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
- Bourne-Webb, Peter & Burlon, Sebastien & Javed, Saqib & Kürten, Sylvia & Loveridge, Fleur, 2016. "Analysis and design methods for energy geostructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 402-419.
- Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
- Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.
- Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
- Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
- Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
- Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
More about this item
Keywords
energy piles; validation; floor slab heat loss; energy; computer simulations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:770-:d:209024. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.