IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i11p3507-3513.html
   My bibliography  Save this article

Dynamic performance of ground-source heat pumps fitted with frequency inverters for part-load control

Author

Listed:
  • Lee, C.K.

Abstract

A model for a ground-source heat pump (GSHP) fitted with a variable-speed compressor was developed. A frequency inverter (FI) was used to modulate the GSHP capacity for improving the part-load performance of the system. Year-round dynamic simulations were made using TRNSYS for a general office based on the weather conditions in Hong Kong (HK), Kunming (KM) and Beijing (BJ). Different control schemes for the part-load control were tried and the results compared. It was found that the adoption of a variable-speed part-load control to the GSHP in both the cooling and heating mode operations was better. A reduction in the compressor energy input by minimum 27% could be achieved although a slight increase in the borefield fluid circulating pump energy consumption was inevitable. The peak borefield fluid temperatures were also reduced which allowed the borehole lengths to be shortened by at least 4% and the initial cost lowered accordingly. An economic analysis indicated that with the reduced borehole lengths, the payback periods were no longer than 0.4Â months. This highlighted the merit of employing a variable-speed part-load in a GSHP system as the initial cost might also be saved besides the running costs under a wide range of climatic conditions.

Suggested Citation

  • Lee, C.K., 2010. "Dynamic performance of ground-source heat pumps fitted with frequency inverters for part-load control," Applied Energy, Elsevier, vol. 87(11), pages 3507-3513, November.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3507-3513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00136-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández-Seara, José & Pereiro, Alejandro & Bastos, Santiago & Dopazo, J. Alberto, 2012. "Experimental evaluation of a geothermal heat pump for space heating and domestic hot water simultaneous production," Renewable Energy, Elsevier, vol. 48(C), pages 482-488.
    2. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    3. Bansal, Vikas & Misra, Rohit & Agarwal, Ghanshyam Das & Mathur, Jyotirmay, 2013. "Transient effect of soil thermal conductivity and duration of operation on performance of Earth Air Tunnel Heat Exchanger," Applied Energy, Elsevier, vol. 103(C), pages 1-11.
    4. Lee, C.K. & Lam, H.N., 2013. "A simplified model of energy pile for ground-source heat pump systems," Energy, Elsevier, vol. 55(C), pages 838-845.
    5. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    6. Fong, K.F. & Lee, C.K. & Lin, Z., 2019. "Investigation on effect of indoor air distribution strategy on solar air-conditioning systems," Renewable Energy, Elsevier, vol. 131(C), pages 413-421.
    7. Ozyurt, Omer & Ekinci, Dundar Arif, 2011. "Experimental study of vertical ground-source heat pump performance evaluation for cold climate in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1257-1265, April.
    8. Bagdanavicius, Audrius & Jenkins, Nick, 2013. "Power requirements of ground source heat pumps in a residential area," Applied Energy, Elsevier, vol. 102(C), pages 591-600.
    9. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    10. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    11. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    12. Bansal, Vikas & Misra, Rohit & Agarwal, Ghanshyam Das & Mathur, Jyotirmay, 2013. "‘Derating Factor’ new concept for evaluating thermal performance of earth air tunnel heat exchanger: A transient CFD analysis," Applied Energy, Elsevier, vol. 102(C), pages 418-426.
    13. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    14. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
    15. Liu, Long & Zhu, Neng & Zhao, Jing, 2016. "Thermal equilibrium research of solar seasonal storage system coupling with ground-source heat pump," Energy, Elsevier, vol. 99(C), pages 83-90.
    16. Yang, YauBin & Wu, Min-Der & Chang, Yu-Choung, 2014. "Temperature control of the four-zone split inverter air conditioners using LMI expression based on LQR for mixed H2/H∞," Applied Energy, Elsevier, vol. 113(C), pages 912-923.
    17. Capozza, Antonio & De Carli, Michele & Zarrella, Angelo, 2013. "Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation," Applied Energy, Elsevier, vol. 107(C), pages 350-363.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    2. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    3. BniLam, Noori & Al-Khoury, Rafid, 2016. "Transient heat conduction in an infinite medium subjected to multiple cylindrical heat sources: An application to shallow geothermal systems," Renewable Energy, Elsevier, vol. 97(C), pages 145-154.
    4. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    5. Li, Min & Li, Ping & Chan, Vincent & Lai, Alvin C.K., 2014. "Full-scale temperature response function (G-function) for heat transfer by borehole ground heat exchangers (GHEs) from sub-hour to decades," Applied Energy, Elsevier, vol. 136(C), pages 197-205.
    6. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    7. Seama Koohi-Fayegh & Marc A. Rosen, 2013. "A Review of the Modelling of Thermally Interacting Multiple Boreholes," Sustainability, MDPI, vol. 5(6), pages 1-18, June.
    8. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    9. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    10. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    11. Choi, Jung Chan & Park, Joonsang & Lee, Seung Rae, 2013. "Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays," Renewable Energy, Elsevier, vol. 52(C), pages 230-240.
    12. Lee, C.K., 2016. "A modified three-dimensional numerical model for predicting the short-time-step performance of borehole ground heat exchangers," Renewable Energy, Elsevier, vol. 87(P1), pages 618-627.
    13. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    14. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
    15. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    16. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    17. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
    18. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2017. "A numerical model for transient simulation of borehole heat exchangers," Renewable Energy, Elsevier, vol. 104(C), pages 224-237.
    19. Kim, Eui-Jong & Bernier, Michel & Cauret, Odile & Roux, Jean-Jacques, 2014. "A hybrid reduced model for borehole heat exchangers over different time-scales and regions," Energy, Elsevier, vol. 77(C), pages 318-326.
    20. Ruiz-Calvo, F. & De Rosa, M. & Acuña, J. & Corberán, J.M. & Montagud, C., 2015. "Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model," Applied Energy, Elsevier, vol. 140(C), pages 210-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3507-3513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.