IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i4p2173-2186.html
   My bibliography  Save this article

An emerging market in fuel cells? Residential combined heat and power in four countries

Author

Listed:
  • Brown, James E.
  • Hendry, Chris N.
  • Harborne, Paul

Abstract

No abstract is available for this item.

Suggested Citation

  • Brown, James E. & Hendry, Chris N. & Harborne, Paul, 2007. "An emerging market in fuel cells? Residential combined heat and power in four countries," Energy Policy, Elsevier, vol. 35(4), pages 2173-2186, April.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:4:p:2173-2186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(06)00281-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beise, Marian, 2004. "Lead markets: country-specific drivers of the global diffusion of innovations," Research Policy, Elsevier, vol. 33(6-7), pages 997-1018, September.
    2. Mitchell, Catherine & Connor, Peter, 2004. "Renewable energy policy in the UK 1990-2003," Energy Policy, Elsevier, vol. 32(17), pages 1935-1947, November.
    3. Beise, Marian & Rennings, Klaus, 2005. "Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations," Ecological Economics, Elsevier, vol. 52(1), pages 5-17, January.
    4. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    5. Bolinger, Mark & Wiser, Ryan & Milford, Lew & Stoddard, Michael & Porter, Kevin, 2001. "States Emerge as Clean Energy Investors: A Review of State Support for Renewable Energy," The Electricity Journal, Elsevier, vol. 14(9), pages 82-95, November.
    6. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    7. James M. Utterback & Happy J. Acee, 2005. "Disruptive Technologies: An Expanded View," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-17.
    8. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    9. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    10. Watson, Jim, 2004. "Co-provision in sustainable energy systems: the case of micro-generation," Energy Policy, Elsevier, vol. 32(17), pages 1981-1990, November.
    11. Watanabe, Chihiro, 1999. "Systems option for sustainable development--effect and limit of the Ministry of International Trade and Industry's efforts to substitute technology for energy," Research Policy, Elsevier, vol. 28(7), pages 719-749, September.
    12. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    13. Suarez, Fernando F., 2004. "Battles for technological dominance: an integrative framework," Research Policy, Elsevier, vol. 33(2), pages 271-286, March.
    14. Poel, Ibo van de, 2003. "The transformation of technological regimes," Research Policy, Elsevier, vol. 32(1), pages 49-68, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, James & Hendry, Chris, 2009. "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, Elsevier, vol. 37(7), pages 2560-2573, July.
    2. Petrescu, Stoian & Petre, Camelia & Costea, Monica & Malancioiu, Octavian & Boriaru, Nicolae & Dobrovicescu, Alexandru & Feidt, Michel & Harman, Charles, 2010. "A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells," Energy, Elsevier, vol. 35(2), pages 729-739.
    3. Ruan, Yingjun & Liu, Qingrong & Zhou, Weiguo & Firestone, Ryan & Gao, Weijun & Watanabe, Toshiyuki, 2009. "Optimal option of distributed generation technologies for various commercial buildings," Applied Energy, Elsevier, vol. 86(9), pages 1641-1653, September.
    4. Russo, Angeloantonio & Vurro, Clodia & Nag, Rajiv, 2019. "To have or to be? The interplay between knowledge structure and market identity in knowledge-based alliance formation," Research Policy, Elsevier, vol. 48(3), pages 571-583.
    5. Frédéric Babonneau & Alain Haurie & Guillaume Jean Tarel & Julien Thénié, 2012. "Assessing the Future of Renewable and Smart Grid Technologies in Regional Energy Systems," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 229-273, June.
    6. Cappa, Francesco & Facci, Andrea Luigi & Ubertini, Stefano, 2015. "Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications," Energy, Elsevier, vol. 90(P2), pages 1229-1238.
    7. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    8. Peter Andreasen, Kristian & Sovacool, Benjamin K., 2014. "Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 891-897.
    9. Huang, Albert Ying-Je & Liu, Ruey-Hua, 2008. "Learning for supplying as a motive to be the early adopter of a new energy technology: A study on the adoption of stationary fuel cells," Energy Policy, Elsevier, vol. 36(6), pages 2143-2153, June.
    10. I. Aleknaviciute & T.G. Karayiannis & M.W. Collins & C. Xanthos, 2016. "Towards clean and sustainable distributed energy system: the potential of integrated PEMFC-CHP," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 296-304.
    11. Marc-Hubert Depret & Abdelillah Hamdouch, 2012. "Clean Technologies and Perspectives of the Green Economy in Emergent and Developing Countries: Foundations, Opportunities and Constraints," Chapters, in: Blandine Laperche & Nadine Levratto & Dimitri Uzunidis (ed.), Crisis, Innovation and Sustainable Development, chapter 12, Edward Elgar Publishing.
    12. Musiolik, Jörg & Markard, Jochen, 2011. "Creating and shaping innovation systems: Formal networks in the innovation system for stationary fuel cells in Germany," Energy Policy, Elsevier, vol. 39(4), pages 1909-1922, April.
    13. Howard, B. & Modi, V., 2017. "Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates," Applied Energy, Elsevier, vol. 185(P1), pages 280-293.
    14. Tiwari, Rajnish & Herstatt, Cornelius, 2012. "India - a lead market for frugal innovations? Extending the lead market theory to emerging economies," Working Papers 67, Hamburg University of Technology (TUHH), Institute for Technology and Innovation Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    2. Edsand, Hans, 2016. "Technological Innovation Systems and the wider context: A framework for developing countries," MERIT Working Papers 2016-017, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Edsand, Hans-Erik, 2019. "Technological innovation system and the wider context: A framework for developing countries," Technology in Society, Elsevier, vol. 58(C).
    4. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    5. Edsand, Hans-Erik, 2017. "Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context," Technology in Society, Elsevier, vol. 49(C), pages 1-15.
    6. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    7. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    8. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    9. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    10. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    11. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    12. Ben Zhang & Lei Ma & Zheng Liu, 2020. "Literature Trend Identification of Sustainable Technology Innovation: A Bibliometric Study Based on Co-Citation and Main Path Analysis," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    13. van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
    14. Raven, Rob, 2007. "Co-evolution of waste and electricity regimes: Multi-regime dynamics in the Netherlands (1969-2003)," Energy Policy, Elsevier, vol. 35(4), pages 2197-2208, April.
    15. Hellsmark, Hans & Jacobsson, Staffan, 2009. "Opportunities for and limits to Academics as System builders--The case of realizing the potential of gasified biomass in Austria," Energy Policy, Elsevier, vol. 37(12), pages 5597-5611, December.
    16. Bleda, Mercedes & del Río, Pablo, 2013. "The market failure and the systemic failure rationales in technological innovation systems," Research Policy, Elsevier, vol. 42(5), pages 1039-1052.
    17. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    18. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    19. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    20. Marlene O’Sullivan, 2020. "Industrial life cycle: relevance of national markets in the development of new industries for energy technologies – the case of wind energy," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 1063-1107, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:4:p:2173-2186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.