IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4592-4599.html
   My bibliography  Save this article

Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units

Author

Listed:
  • Jouhara, Hussam
  • Meskimmon, Richard

Abstract

Building legislation along with environmental and comfort concerns are increasingly driving designers of building services and air conditioning equipment towards more energy efficient solutions. Heat pipe technology is emerging as a viable, efficient and environmentally-sound technology for applications in efficient air handling unit designs. In this paper, an experimental investigation on the thermal performance of an air-to-air heat exchanger, which utilises heat pipe technology, will be presented. The heat exchanger consisted of 7 loop heat pipes with finned evaporator and condenser sections. The heat exchanger was fully instrumented to test for the effect of the variation of heat load and the air velocity, through the heat exchanger, on the overall thermal resistance of the loops. The values of the effectiveness of the heat pipe heat exchanger are shown to vary with the air velocity as expected but the results also allow the prediction of effectiveness variation with the heat load and operating temperature (previously assumed to be constant). The results allow an interpretation of the overall thermal performance of each loop heat pipe as a function of the load and air velocity. The paper concludes with a theoretical analysis of the energy savings that would be expected when utilising the technology in a representative application.

Suggested Citation

  • Jouhara, Hussam & Meskimmon, Richard, 2010. "Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 35(12), pages 4592-4599.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4592-4599
    DOI: 10.1016/j.energy.2010.03.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Shuang-Ying & Xiao, Lan & Cao, Yiding & Li, You-Rong, 2010. "A parabolic dish/AMTEC solar thermal power system and its performance evaluation," Applied Energy, Elsevier, vol. 87(2), pages 452-462, February.
    2. Saatci, A.M. & Olwi, I.A. & Al-Hindi, R.R. & Khalifa, A.M. & Akyurt, M., 1989. "Passive transport of solar energy downward by heat pipes," Energy, Elsevier, vol. 14(7), pages 383-392.
    3. Hussam Jouhara, 2009. "Economic assessment of the benefits of wraparound heat pipes in ventilation processes for hot and humid climates," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(1), pages 52-60, March.
    4. Shatat, Mahmoud. I.M. & Mahkamov, K., 2010. "Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling," Renewable Energy, Elsevier, vol. 35(1), pages 52-61.
    5. Jianfeng, Lu & Jing, Ding & Jianping, Yang, 2010. "Heat transfer performance and exergetic optimization for solar receiver pipe," Renewable Energy, Elsevier, vol. 35(7), pages 1477-1483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    2. Sarafraz, M.M. & Pourmehran, O. & Yang, B. & Arjomandi, M., 2019. "Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids," Renewable Energy, Elsevier, vol. 136(C), pages 884-895.
    3. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    4. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    5. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    6. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.
    7. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    8. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    9. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    10. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    11. Ignacio Carvajal-Mariscal & Jorge E. De León-Ruiz & Jorge Vázquez-Arenas & María Venegas, 2022. "Effect of Working Fluid-Filling Ratio Combination on Thermosyphon Performance as Add-In Enhancer for Indoor Air Conditioning Devices," Energies, MDPI, vol. 15(16), pages 1-15, August.
    12. Chernysheva, Mariya A. & Pastukhov, Vladimir G. & Maydanik, Yury F., 2013. "Analysis of heat exchange in the compensation chamber of a loop heat pipe," Energy, Elsevier, vol. 55(C), pages 253-262.
    13. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    14. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    15. Ewa Zender–Świercz, 2021. "A Review of Heat Recovery in Ventilation," Energies, MDPI, vol. 14(6), pages 1-23, March.
    16. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    17. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    18. Natthakit Ritthong & Sommart Thongkom & Apichai Sawisit & Boonyabhorn Duangsa & Wirote Ritthong, 2024. "Optimization Design of Closed-Loop Thermosyphons: Experimentation and Computational Fluid Dynamics Modeling," Energies, MDPI, vol. 17(2), pages 1-18, January.
    19. Almahmoud, Sulaiman & Jouhara, Hussam, 2019. "Experimental and theoretical investigation on a radiative flat heat pipe heat exchanger," Energy, Elsevier, vol. 174(C), pages 972-984.
    20. Kundu, Balaram & Barman, Debasis, 2011. "An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions," Energy, Elsevier, vol. 36(5), pages 2572-2588.
    21. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    22. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.
    23. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
    2. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    3. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    4. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    5. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    6. Yang, Xiaoping & Yang, Xiaoxi & Ding, Jing & Shao, Youyuan & Fan, Hongbo, 2012. "Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower," Applied Energy, Elsevier, vol. 90(1), pages 142-147.
    7. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    8. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    9. Abdessemed, Amina & Bougriou, Cherif & Guerraiche, Djemaa & Abachi, Rabah, 2019. "Effects of tray shape of a multi-stage solar still coupled to a parabolic concentrating solar collector in Algeria," Renewable Energy, Elsevier, vol. 132(C), pages 1134-1140.
    10. Sarafraz, M.M. & Pourmehran, O. & Yang, B. & Arjomandi, M., 2019. "Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids," Renewable Energy, Elsevier, vol. 136(C), pages 884-895.
    11. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    12. Sheykhlou, Hossein & Mohammadi Aghdash, Mehdi & Jafarmadar, Samad & Aryanfar, Yashar, 2023. "Multi-aspect prediction of the sensitivity of thermodynamic/thermoeconomic performance metrics of an innovative solar-driven trigeneration system utilizing thermal energy storage," Energy, Elsevier, vol. 284(C).
    13. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    14. Rogelio Peón Menéndez & Juan Á. Martínez & Miguel J. Prieto & Lourdes Á. Barcia & Juan M. Martín Sánchez, 2014. "A Novel Modeling of Molten-Salt Heat Storage Systems in Thermal Solar Power Plants," Energies, MDPI, vol. 7(10), pages 1-20, October.
    15. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    16. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and env," Applied Energy, Elsevier, vol. 340(C).
    17. Sampathkumar, K. & Arjunan, T.V. & Pitchandi, P. & Senthilkumar, P., 2010. "Active solar distillation--A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1503-1526, August.
    18. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
    19. Bait, Omar & Si–Ameur, Mohamed, 2016. "Numerical investigation of a multi-stage solar still under Batna climatic conditions: Effect of radiation term on mass and heat energy balances," Energy, Elsevier, vol. 98(C), pages 308-323.
    20. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4592-4599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.