IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp253-262.html
   My bibliography  Save this article

Analysis of heat exchange in the compensation chamber of a loop heat pipe

Author

Listed:
  • Chernysheva, Mariya A.
  • Pastukhov, Vladimir G.
  • Maydanik, Yury F.

Abstract

A three-dimensional heat–and–mass transfer model of a flat evaporator of a loop heat pipe has been developed for investigating heat–and–mass in a compensation chamber filled with a liquid. Numerical simulation was implemented using EFDLab® software package in order to predict the temperature distribution of the flat evaporator of a copper-water LHP (loop heat pipe) as well as the flow streamline and velocity field in the compensation chamber as a function of heat load. A computer simulation makes it possible to evaluate the heat exchange at the inner surface of the compensation chamber. Heat exchange data were used as a boundary condition in researching the problem of the drying effect of a wick and a transformation of the evaporating front in the active zone of the flat evaporator.

Suggested Citation

  • Chernysheva, Mariya A. & Pastukhov, Vladimir G. & Maydanik, Yury F., 2013. "Analysis of heat exchange in the compensation chamber of a loop heat pipe," Energy, Elsevier, vol. 55(C), pages 253-262.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:253-262
    DOI: 10.1016/j.energy.2013.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouhara, Hussam & Meskimmon, Richard, 2010. "Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 35(12), pages 4592-4599.
    2. Saatci, A.M. & Olwi, I.A. & Al-Hindi, R.R. & Khalifa, A.M. & Akyurt, M., 1989. "Passive transport of solar energy downward by heat pipes," Energy, Elsevier, vol. 14(7), pages 383-392.
    3. Singh, Randeep & Mochizuki, Masataka & Mashiko, Koichi & Nguyen, Thang, 2011. "Heat pipe based cold energy storage systems for datacenter energy conservation," Energy, Elsevier, vol. 36(5), pages 2802-2811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Genbach & Hristo Beloev & David Bondartsev, 2021. "Comparison of Cooling Systems in Power Plant Units," Energies, MDPI, vol. 14(19), pages 1-14, October.
    2. Chernysheva, M.A. & Yushakova, S.I. & Maydanik, Yu.F., 2014. "Copper–water loop heat pipes for energy-efficient cooling systems of supercomputers," Energy, Elsevier, vol. 69(C), pages 534-542.
    3. Genbach, A.A. & Bondartsev, D. Yu. & Iliev, I.K. & Georgiev, A.G., 2020. "Scientific method of creation of ecologically clean capillary-porous systems of cooling of power equipment elements of power plants on the example of gas turbines," Energy, Elsevier, vol. 199(C).
    4. Zhang, Hainan & Tian, Yaling & Tian, Changqing & Zhai, Zhiqiang, 2023. "Effect of key structure and working condition parameters on a compact flat-evaporator loop heat pipe for chip cooling of data centers," Energy, Elsevier, vol. 284(C).
    5. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    2. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
    3. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    4. Sarafraz, M.M. & Pourmehran, O. & Yang, B. & Arjomandi, M., 2019. "Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids," Renewable Energy, Elsevier, vol. 136(C), pages 884-895.
    5. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    6. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    7. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    8. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    9. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    10. Kundu, Balaram & Barman, Debasis, 2011. "An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions," Energy, Elsevier, vol. 36(5), pages 2572-2588.
    11. Bouchenna, Chafea & Huchet, Florian & Aramiou, Carl & Hamard, Erwan & Le Guen, Laurédan & Paul, Jean-Marc, 2021. "Heat exchanger design based on earthen materials," Energy, Elsevier, vol. 227(C).
    12. Chernysheva, M.A. & Yushakova, S.I. & Maydanik, Yu.F., 2014. "Copper–water loop heat pipes for energy-efficient cooling systems of supercomputers," Energy, Elsevier, vol. 69(C), pages 534-542.
    13. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    14. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    15. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    16. Natthakit Ritthong & Sommart Thongkom & Apichai Sawisit & Boonyabhorn Duangsa & Wirote Ritthong, 2024. "Optimization Design of Closed-Loop Thermosyphons: Experimentation and Computational Fluid Dynamics Modeling," Energies, MDPI, vol. 17(2), pages 1-18, January.
    17. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    18. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
    19. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.
    20. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:253-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.