IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220327316.html
   My bibliography  Save this article

Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger

Author

Listed:
  • Jouhara, Hussam
  • Almahmoud, Sulaiman
  • Brough, Daniel
  • Guichet, Valentin
  • Delpech, Bertrand
  • Chauhan, Amisha
  • Ahmad, Lujean
  • Serey, Nicolas

Abstract

In this paper, the performance of a multi-pass heat pipe-based heat exchanger (HPHE) is investigated experimentally and theoretically. The heat pipe system consists of copper heat pipes in a specific equatorially staggered configuration to facilitate heat transportation from a hot gas (air) to a water flow, which cools the condenser section of these heat pipes. The effect of the Reynolds number on the heat transfer rate was studied by altering the number of passes for the evaporator section for the same system by the incorporation of various baffles and by varying the water flow rate. The experimental results have highlighted the strong correlation between heat exchanger performance and the Reynolds number. By increasing the number of passes from one to five, the effectiveness of the HPHE was improved by more than 25%. It has been demonstrated that increasing the number of passes increases the Reynolds number of the flow, leading to higher heat transfer coefficients and lower thermal forced convection resistances. The HPHE overall performance, as well as, the outlet temperatures of the fluids were predicted through two theoretical models, based on the Log Mean Temperature Difference (LMTD) method and the Effectiveness-Number of Transfer Units (ε-NTU) method. The predictions were compared with experimental results and the accuracy of the models reported. The validation showed that the developed iterative LMTD model predicted the performance of the HPHE within ±15.5% error. In comparison, the ε-NTU model predicted the total effectiveness with a maximum error of 19% and was able to predict the outlet temperatures of both air and water streams within an accuracy of ±0.7 °C. The reported research is of importance for the application of heat pipe heat exchangers in waste heat recovery. Finally, knowledge is provided on the accuracy of the available prediction models.

Suggested Citation

  • Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327316
    DOI: 10.1016/j.energy.2020.119624
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    2. Jouhara, Hussam & Meskimmon, Richard, 2010. "Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 35(12), pages 4592-4599.
    3. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    4. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    5. Mroue, H. & Ramos, J.B. & Wrobel, L.C. & Jouhara, H., 2017. "Performance evaluation of a multi-pass air-to-water thermosyphon-based heat exchanger," Energy, Elsevier, vol. 139(C), pages 1243-1260.
    6. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    7. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    8. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    9. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    10. Hussam Jouhara, 2009. "Economic assessment of the benefits of wraparound heat pipes in ventilation processes for hot and humid climates," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(1), pages 52-60, March.
    11. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    12. Brough, Daniel & Mezquita, Ana & Ferrer, Salvador & Segarra, Carmen & Chauhan, Amisha & Almahmoud, Sulaiman & Khordehgah, Navid & Ahmad, Lujean & Middleton, David & Sewell, H. Isaac & Jouhara, Hussam, 2020. "An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger," Energy, Elsevier, vol. 208(C).
    13. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    14. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    15. Almahmoud, Sulaiman & Jouhara, Hussam, 2019. "Experimental and theoretical investigation on a radiative flat heat pipe heat exchanger," Energy, Elsevier, vol. 174(C), pages 972-984.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthik Silaipillayarputhur & Tawfiq Al-Mughanam, 2021. "Performance of Pure Crossflow Heat Exchanger in Sensible Heat Transfer Application," Energies, MDPI, vol. 14(17), pages 1-25, September.
    2. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
    3. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    4. Robert Ștefan Vizitiu & Ștefănica Eliza Vizitiu & Andrei Burlacu & Chérifa Abid & Marius Costel Balan & Nicoleta Elena Kaba, 2024. "Experimental Investigation of a Water–Air Heat Recovery System," Sustainability, MDPI, vol. 16(17), pages 1-11, September.
    5. Yi Ding & Qiang Guo & Wenyuan Guo & Wenxiao Chu & Qiuwang Wang, 2024. "Review of Recent Applications of Heat Pipe Heat Exchanger Use for Waste Heat Recovery," Energies, MDPI, vol. 17(11), pages 1-28, May.
    6. Wu, Zhiyong & Lu, Zhibin & Zhang, Bingjian & He, Chang & Chen, Qinglin & Yu, Haoshui & Ren, Jingzheng, 2022. "Stochastic bi-objective optimization for closed wet cooling tower systems based on a simplified analytical model," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Bertrand, Delpech & Axcell, Brian & Montorsi, Luca & Venturelli, Matteo & Almahmoud, Sulaiman & Milani, Massimo & Ahmad, Lujean & Chauhan, Amisha, 2021. "Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery," Energy, Elsevier, vol. 223(C).
    2. Almahmoud, Sulaiman & Jouhara, Hussam, 2019. "Experimental and theoretical investigation on a radiative flat heat pipe heat exchanger," Energy, Elsevier, vol. 174(C), pages 972-984.
    3. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    4. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    5. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    6. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    7. Delpech, Bertrand & Axcell, Brian & Jouhara, Hussam, 2019. "Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln," Energy, Elsevier, vol. 170(C), pages 636-651.
    8. Brough, Daniel & Mezquita, Ana & Ferrer, Salvador & Segarra, Carmen & Chauhan, Amisha & Almahmoud, Sulaiman & Khordehgah, Navid & Ahmad, Lujean & Middleton, David & Sewell, H. Isaac & Jouhara, Hussam, 2020. "An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger," Energy, Elsevier, vol. 208(C).
    9. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    10. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    11. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    12. Łukasz Amanowicz, 2020. "Controlling the Thermal Power of a Wall Heating Panel with Heat Pipes by Changing the Mass Flowrate and Temperature of Supplying Water—Experimental Investigations," Energies, MDPI, vol. 13(24), pages 1-18, December.
    13. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    14. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    15. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    16. Malinauskaite, Jurgita & Jouhara, Hussam & Egilegor, Bakartxo & Al-Mansour, Fouad & Ahmad, Lujean & Pusnik, Matevz, 2020. "Energy efficiency in the industrial sector in the EU, Slovenia, and Spain," Energy, Elsevier, vol. 208(C).
    17. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    18. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
    19. Mroue, H. & Ramos, J.B. & Wrobel, L.C. & Jouhara, H., 2017. "Performance evaluation of a multi-pass air-to-water thermosyphon-based heat exchanger," Energy, Elsevier, vol. 139(C), pages 1243-1260.
    20. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.