IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp527-536.html
   My bibliography  Save this article

Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems

Author

Listed:
  • Bahaidarah, Haitham M.
  • Tanweer, Bilal
  • Gandhidasan, P.
  • Ibrahim, Nasiru
  • Rehman, Shafiqur

Abstract

Comparative study on flat photovoltaic (PV) string and symmetric compound parabolic concentrator (CPC) photovoltaic system has been presented in this paper. Two flat PV strings and two unglazed PV–CPC systems are considered. The cells of each of the flat PV and PV–CPC strings are subjected to cooling to reduce temperature. The performance of the two configurations with and without cooling is evaluated numerically and experimentally. The numerical models for the flat PV string and the PV–CPC systems are solved using Engineering Equation Solver (EES) software and the concentration ratio of the CPC system is considered as 2.3X. Absorbed energy is calculated with and without cooling for the PV–CPC and flat PV systems. The absorbed energy is used to solve the energy balance equations on different nodes of the system from which the cell temperature was determined. The results showed that the maximum power output of the flat PV string with cooling was approximately 21W which gives about 49% more than the power obtained without cooling. The maximum power output of the PV–CPC system with cooling was approximately 34W which is about twice of the power obtained in the absence of cooling. It was found that the power output of the PV–CPC system is higher than that of the flat PV string with and without cooling by 39% and 23% respectively. Comparison of the numerical results with experimental data showed good agreement for the two configurations. The maximum percentage differences between the numerical and experimental power output for the flat PV with and without cooling are 5% and 7%, respectively. While those of the PV–CPC system with and without cooling are 9% and 11%, respectively.

Suggested Citation

  • Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:527-536
    DOI: 10.1016/j.apenergy.2014.09.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914010083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Shuang-Ying & Xiao, Lan & Cao, Yiding & Li, You-Rong, 2010. "A parabolic dish/AMTEC solar thermal power system and its performance evaluation," Applied Energy, Elsevier, vol. 87(2), pages 452-462, February.
    2. Stutenbaeumer, Ulrich & Mesfin, Belayneh, 1999. "Equivalent model of monocrystalline, polycrystalline and amorphous silicon solar cells," Renewable Energy, Elsevier, vol. 18(4), pages 501-512.
    3. Hj. Othman, Mohd. Yusof & Yatim, Baharudin & Sopian, Kamaruzzaman & Abu Bakar, Mohd. Nazari, 2005. "Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins," Renewable Energy, Elsevier, vol. 30(13), pages 2005-2017.
    4. Tang, Runsheng & Wu, Maogang & Yu, Yamei & Li, Ming, 2010. "Optical performance of fixed east–west aligned CPCs used in China," Renewable Energy, Elsevier, vol. 35(8), pages 1837-1841.
    5. Li, Ming & Ji, Xu & Li, Guoliang & Wei, Shengxian & Li, YingFeng & Shi, Feng, 2011. "Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system," Applied Energy, Elsevier, vol. 88(9), pages 3218-3227.
    6. Xu, Chengmu & Chen, Zhiping & Li, Ming & Zhang, Peng & Ji, Xu & Luo, Xi & Liu, Jiangtao, 2014. "Research on the compensation of the end loss effect for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 115(C), pages 128-139.
    7. Amrizal, N. & Chemisana, D. & Rosell, J.I., 2013. "Hybrid photovoltaic–thermal solar collectors dynamic modeling," Applied Energy, Elsevier, vol. 101(C), pages 797-807.
    8. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    9. Guiqiang, Li & Gang, Pei & Yuehong, Su & Yunyun, Wang & Jie, Ji, 2014. "Design and investigation of a novel lens-walled compound parabolic concentrator with air gap," Applied Energy, Elsevier, vol. 125(C), pages 21-27.
    10. Al-Alili, A. & Hwang, Y. & Radermacher, R. & Kubo, I., 2012. "A high efficiency solar air conditioner using concentrating photovoltaic/thermal collectors," Applied Energy, Elsevier, vol. 93(C), pages 138-147.
    11. Sellami, Nazmi & Mallick, Tapas K., 2013. "Optical efficiency study of PV Crossed Compound Parabolic Concentrator," Applied Energy, Elsevier, vol. 102(C), pages 868-876.
    12. Kong, Chengdong & Xu, Zilin & Yao, Qiang, 2013. "Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells," Applied Energy, Elsevier, vol. 112(C), pages 618-625.
    13. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2013. "Performance analysis of a mirror symmetrical dielectric totally internally reflecting concentrator for building integrated photovoltaic systems," Applied Energy, Elsevier, vol. 111(C), pages 288-299.
    14. Gu, Xiaoguang & Taylor, Robert A. & Morrison, Graham & Rosengarten, Gary, 2014. "Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming," Applied Energy, Elsevier, vol. 119(C), pages 467-475.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guiqiang & Lu, Yashun & Shittu, Samson & Zhao, Xudong, 2020. "Scale effect on electrical characteristics of CPC-PV," Energy, Elsevier, vol. 192(C).
    2. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    3. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    4. Guihua Li & Jingjing Tang & Runsheng Tang, 2018. "A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems," Energies, MDPI, vol. 11(9), pages 1-30, September.
    5. Kong, Xiangfei & Zhang, Lanlan & Li, Han & Wang, Yongzhen & Fan, Man, 2022. "Effect of solar energy concentrating and phase change cooling on energy and exergy performance improvement of photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 197(C), pages 1251-1263.
    6. El-Samie, Mostafa M. Abd & Ju, Xing & Zhang, Zheyang & Adam, Saadelnour Abdueljabbar & Pan, Xinyu & Xu, Chao, 2020. "Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system," Energy, Elsevier, vol. 190(C).
    7. Afzali Gorouh, Hossein & Salmanzadeh, Mazyar & Nasseriyan, Pouriya & Hayati, Abolfazl & Cabral, Diogo & Gomes, João & Karlsson, Björn, 2022. "Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator," Renewable Energy, Elsevier, vol. 181(C), pages 535-553.
    8. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    9. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    10. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    11. Elharoun, O. & Tawfik, M. & El-Sharkawy, Ibrahim I. & Zeidan, E., 2023. "Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter," Energy, Elsevier, vol. 278(PA).
    12. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    13. Chen, Tingsen & Liu, Shuli & Zhang, Shaoliang & Shen, Yongliang & Ji, Wenjie & Wang, Zhihao & Li, Wuyan, 2024. "Experimental study on solar wall by considering parametric sensitivity analysis to enhance heat transfer and energy grade using compound parabolic concentrator and pulsating heat pipe," Renewable Energy, Elsevier, vol. 229(C).
    14. Atheaya, Deepali & Tiwari, Arvind & Tiwari, G.N. & Al-Helal, I.M., 2016. "Performance evaluation of inverted absorber photovoltaic thermal compound parabolic concentrator (PVT-CPC): Constant flow rate mode," Applied Energy, Elsevier, vol. 167(C), pages 70-79.
    15. Baig, Hasan & Siviter, J. & Li, W. & Paul, M.C. & Montecucco, A. & Rolley, M.H. & Sweet, T.K.N. & Gao, M. & Mullen, P.A. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Knox, A.R. & Mallick, Tapas, 2018. "Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy," Energy, Elsevier, vol. 147(C), pages 547-560.
    16. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Siviter, J. & Montecucco, A. & Knox, A.R. & Baig, H. & Mallick, T.K. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells," Applied Energy, Elsevier, vol. 202(C), pages 755-771.
    17. Benjamín Chavarría-Domínguez & Susana Estefany De León-Aldaco & Nicolás Velázquez-Limón & Mario Ponce-Silva & Jesús Armando Aguilar-Jiménez & Fernando Chavarría-Domínguez, 2024. "A Review of the Modeling of Parabolic Trough Solar Collectors Coupled to Solar Receivers with Photovoltaic/Thermal Generation," Energies, MDPI, vol. 17(7), pages 1-32, March.
    18. Xu, Shi-Jie & Wu, Shuang-Ying & Xiao, Lan & Xue, Pei & Wang, Chong-Yang, 2024. "Overall performance evaluation of a novel optical truncation method for compound parabolic concentrated photovoltaic-thermal system," Renewable Energy, Elsevier, vol. 228(C).
    19. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    20. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    2. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    3. Guihua Li & Jingjing Tang & Runsheng Tang, 2018. "A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems," Energies, MDPI, vol. 11(9), pages 1-30, September.
    4. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    5. Elharoun, O. & Tawfik, M. & El-Sharkawy, Ibrahim I. & Zeidan, E., 2023. "Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter," Energy, Elsevier, vol. 278(PA).
    6. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    7. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    8. Carlo Renno & Michele De Giacomo, 2014. "Dynamic Simulation of a CPV/T System Using the Finite Element Method," Energies, MDPI, vol. 7(11), pages 1-20, November.
    9. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    10. Imtiaz Hussain, M. & Lee, Gwi Hyun, 2015. "Experimental and numerical studies of a U-shaped solar energy collector to track the maximum CPV/T system output by varying the flow rate," Renewable Energy, Elsevier, vol. 76(C), pages 735-742.
    11. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    12. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    13. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    14. Calise, Francesco & Palombo, Adolfo & Vanoli, Laura, 2012. "A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses," Energy, Elsevier, vol. 46(1), pages 283-294.
    15. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas'ud, Abdullahi & Md Yunus, No, 2015. "Optimisation of the performance of a novel rotationally asymmetrical optical concentrator design for building integrated photovoltaic system," Energy, Elsevier, vol. 90(P1), pages 1033-1045.
    16. Kumar, Anil & Baredar, Prashant & Qureshi, Uzma, 2015. "Historical and recent development of photovoltaic thermal (PVT) technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1428-1436.
    17. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    18. Julia Marín-Sáez & Daniel Chemisana & Álex Moreno & Alberto Riverola & Jesús Atencia & María-Victoria Collados, 2016. "Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications," Energies, MDPI, vol. 9(8), pages 1-19, July.
    19. Tomar, Vivek & Norton, Brian & Tiwari, G.N., 2019. "A novel approach towards investigating the performance of different PVT configurations integrated on test cells: An experimental study," Renewable Energy, Elsevier, vol. 137(C), pages 93-108.
    20. Tang, Feng & Li, Guihua & Tang, Runsheng, 2016. "Design and optical performance of CPC based compound plane concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 140-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:527-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.