IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5939-d889820.html
   My bibliography  Save this article

Effect of Working Fluid-Filling Ratio Combination on Thermosyphon Performance as Add-In Enhancer for Indoor Air Conditioning Devices

Author

Listed:
  • Ignacio Carvajal-Mariscal

    (Instituto Politécnico Nacional, ESIME–UPALM, Mexico City 07738, Mexico)

  • Jorge E. De León-Ruiz

    (Centro de Investigación en Materiales Avanzados, S.C., CIMAV, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico)

  • Jorge Vázquez-Arenas

    (Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia, Mexico City 07738, Mexico)

  • María Venegas

    (Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, 28911 Madrid, Spain)

Abstract

An experimental study is presented to account for the implementation of a two-phase closed thermosyphon pipe, for energy-saving purposes, in air conditioning systems in the context of COVID-19. The experimental setup consisted of a 0.5 m × 0.0127 m type L copper pipe which was employed as the body of the heat exchanger; an electric resistance heater of 0.1 m length located at the bottom; and a 0.25 m length water-cooled concentric condenser located at the top. The evaluation was conducted employing acetone, ethanol, and distilled water as working fluids; ranging the heat supplied at the evaporator from 25 to 125 W and the filling ratio from 20% to 40% of the total inner volume of the thermosyphon. From the data obtained, it was found that ethanol is the working fluid most susceptible to changes in operation conditions. Contrarily, distilled water was found to deliver consistent performance, up to a point that, for the analysed setup, it is considered to be independent of both, heat flow supplied at the evaporator and thermosyphon filling ratio. Meanwhile, acetone was found to be the only fluid tested that displays a directly proportional behaviour between heat absorption and dissipation. From compiling experimental data, response surfaces were constructed and used as direct and rough optimization tools. The information provided by this approach is considered to be particularly useful and is introduced for modelling and design purposes. Based on the results, it was found that acetone, within operation ranges of 34 % < ϕ < 40 % and 75 W < Q ˙ E v a p < 125 W , was the most suitable working fluid to use in a two-phase closed thermosyphon for energy-saving purposes in air conditioning applications.

Suggested Citation

  • Ignacio Carvajal-Mariscal & Jorge E. De León-Ruiz & Jorge Vázquez-Arenas & María Venegas, 2022. "Effect of Working Fluid-Filling Ratio Combination on Thermosyphon Performance as Add-In Enhancer for Indoor Air Conditioning Devices," Energies, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5939-:d:889820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouhara, Hussam & Meskimmon, Richard, 2010. "Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 35(12), pages 4592-4599.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    2. Natthakit Ritthong & Sommart Thongkom & Apichai Sawisit & Boonyabhorn Duangsa & Wirote Ritthong, 2024. "Optimization Design of Closed-Loop Thermosyphons: Experimentation and Computational Fluid Dynamics Modeling," Energies, MDPI, vol. 17(2), pages 1-18, January.
    3. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    4. Sarafraz, M.M. & Pourmehran, O. & Yang, B. & Arjomandi, M., 2019. "Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids," Renewable Energy, Elsevier, vol. 136(C), pages 884-895.
    5. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    6. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    7. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.
    8. Ewa Zender–Świercz, 2021. "A Review of Heat Recovery in Ventilation," Energies, MDPI, vol. 14(6), pages 1-23, March.
    9. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    10. Kundu, Balaram & Barman, Debasis, 2011. "An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions," Energy, Elsevier, vol. 36(5), pages 2572-2588.
    11. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    12. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    13. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    14. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.
    15. Chernysheva, Mariya A. & Pastukhov, Vladimir G. & Maydanik, Yury F., 2013. "Analysis of heat exchange in the compensation chamber of a loop heat pipe," Energy, Elsevier, vol. 55(C), pages 253-262.
    16. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    17. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    18. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    19. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
    20. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5939-:d:889820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.