IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms16104.html
   My bibliography  Save this article

Selective production of arenes via direct lignin upgrading over a niobium-based catalyst

Author

Listed:
  • Yi Shao

    (Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology)

  • Qineng Xia

    (Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology)

  • Lin Dong

    (Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology)

  • Xiaohui Liu

    (Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology)

  • Xue Han

    (School of Chemistry, University of Manchester)

  • Stewart F. Parker

    (ISIS Facility, STFC Rutherford Appleton Laboratory)

  • Yongqiang Cheng

    (Neutron Sciences Directorate, Oak Ridge National Laboratory)

  • Luke L. Daemen

    (Neutron Sciences Directorate, Oak Ridge National Laboratory)

  • Anibal J. Ramirez-Cuesta

    (Neutron Sciences Directorate, Oak Ridge National Laboratory)

  • Sihai Yang

    (School of Chemistry, University of Manchester)

  • Yanqin Wang

    (Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology)

Abstract

Lignin is the only large-volume renewable source of aromatic chemicals. Efficient depolymerization and deoxygenation of lignin while retaining the aromatic functionality are attractive but extremely challenging. Here we report the selective production of arenes via direct hydrodeoxygenation of organosolv lignin over a porous Ru/Nb2O5 catalyst that enabled the complete removal of the oxygen content from lignin. The conversion of birch lignin to monomer C7–C9 hydrocarbons is nearly quantitative based on its monomer content, with a total mass yield of 35.5 wt% and an exceptional arene selectivity of 71 wt%. Inelastic neutron scattering and DFT calculations confirm that the Nb2O5 support is catalytically unique compared with other traditional oxide supports, and the disassociation energy of Caromatic–OH bonds in phenolics is significantly reduced upon adsorption on Nb2O5, resulting in its distinct selectivity to arenes. This one-pot process provides a promising approach for improved lignin valorization with general applicability.

Suggested Citation

  • Yi Shao & Qineng Xia & Lin Dong & Xiaohui Liu & Xue Han & Stewart F. Parker & Yongqiang Cheng & Luke L. Daemen & Anibal J. Ramirez-Cuesta & Sihai Yang & Yanqin Wang, 2017. "Selective production of arenes via direct lignin upgrading over a niobium-based catalyst," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16104
    DOI: 10.1038/ncomms16104
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms16104
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms16104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihao Zhang & Qiang Li & Xiangkun Wu & Claire Bourmaud & Dionisios G. Vlachos & Jeremy Luterbacher & Andras Bodi & Patrick Hemberger, 2024. "A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Huimin Zhong & Jiayan Zhou & Mohamed Abdelrahman & Hao Xu & Zian Wu & Luncheng Cui & Zhenhua Ma & Liguo Yang & Xiang Li, 2021. "The Effect of Lignin Composition on Ruminal Fiber Fractions Degradation from Different Roughage Sources in Water Buffalo ( Bubalus bubalis )," Agriculture, MDPI, vol. 11(10), pages 1-15, October.
    3. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    4. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    5. Zhang, Chengzhi & Zhang, Xing & Wu, Jingfeng & Zhu, Lingjun & Wang, Shurong, 2022. "Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx," Applied Energy, Elsevier, vol. 328(C).
    6. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Cao, Yang & He, Mingjing & Dutta, Shanta & Luo, Gang & Zhang, Shicheng & Tsang, Daniel C.W., 2021. "Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Guan, Weixiang & Chen, Xiao & Zhang, Jie & Hu, Haoquan & Liang, Changhai, 2020. "Catalytic transfer hydrogenolysis of lignin α-O-4 model compound 4-(benzyloxy)phenol and lignin over Pt/HNbWO6/CNTs catalyst," Renewable Energy, Elsevier, vol. 156(C), pages 249-259.
    10. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.