IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v328y2022ics0306261922014568.html
   My bibliography  Save this article

Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx

Author

Listed:
  • Zhang, Chengzhi
  • Zhang, Xing
  • Wu, Jingfeng
  • Zhu, Lingjun
  • Wang, Shurong

Abstract

Hydrodeoxygenation (HDO) of lignin-derived bio-oil is a promising route to produce advanced biofuels. However, the removal of oxygen-containing functional groups with high bond strength in bio-oil challenges the development of efficient, stable, and inexpensive catalysts. In this study, a series of bifunctional catalysts were synthesized by coupling Ni–Co alloy with an oxophilic NbOx support, which was used for the HDO of lignin-derived phenolics to produce cycloalkanes. The Ni–Co alloy formed on the bimetallic catalysts during calcination and reduction was verified by TEM, XPS, and H2-TPR measurements, which showed excellent hydrogenolysis activity. The composition of the Ni–Co alloy was the most uniform with a Ni/Co molar ratio of 1, and the catalyst achieved the highest catalytic activity. The oxygen vacancies provided by the NbOx support also enhanced the adsorption of phenolics and promoted the removal of oxygen-containing functional groups by forming a specific configuration. The synergistic catalysis of Ni–Co alloy and oxygen vacancies achieved complete conversion of guaiacol with a high cycloalkane selectivity of 98.9 % under optimal conditions (300 °C, 3 MPa H2, and 2 h). More importantly, only marginal deactivation occurred on the 5Ni–5Co/NbOx catalyst after 5 cycles and it was also successfully applied to the efficient conversion of other complex lignin-derived phenolics. Therefore, an efficient and economical strategy of coupling the Ni–Co alloy with an oxophilic NbOx support to catalyze the HDO of lignin-derived phenolics to produce cycloalkanes was prospective.

Suggested Citation

  • Zhang, Chengzhi & Zhang, Xing & Wu, Jingfeng & Zhu, Lingjun & Wang, Shurong, 2022. "Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx," Applied Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014568
    DOI: 10.1016/j.apenergy.2022.120199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faba, Laura & Díaz, Eva & Ordóñez, Salvador, 2015. "Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 273-287.
    2. Yi Shao & Qineng Xia & Lin Dong & Xiaohui Liu & Xue Han & Stewart F. Parker & Yongqiang Cheng & Luke L. Daemen & Anibal J. Ramirez-Cuesta & Sihai Yang & Yanqin Wang, 2017. "Selective production of arenes via direct lignin upgrading over a niobium-based catalyst," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    4. Resende, K.A. & Noronha, F.B. & Hori, C.E., 2020. "Hydrodeoxygenation of phenol over metal supported niobia catalysts," Renewable Energy, Elsevier, vol. 149(C), pages 198-207.
    5. Haohong Duan & Juncai Dong & Xianrui Gu & Yung-Kang Peng & Wenxing Chen & Titipong Issariyakul & William K. Myers & Meng-Jung Li & Ni Yi & Alexander F. R. Kilpatrick & Yu Wang & Xusheng Zheng & Shufan, 2017. "Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    6. Cheng, Feng & Brewer, Catherine E., 2017. "Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 673-722.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    2. Xuan-Tien Pham & Vy Anh Tran & Lan-Trinh Thi Tran & Tram Ngoc P. Nguyen & Thong Hoang Le & Huy Hoang & Thi-Hiep Nguyen & Khanh B. Vu & Thanh Khoa Phung, 2022. "Hierarchical Porous Activated Carbon-Supported Ruthenium Catalysts for Catalytic Cleavage of Lignin Model Compounds," Energies, MDPI, vol. 15(22), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    2. Scaldaferri, C.A. & Pasa, V.M.D., 2019. "Green diesel production from upgrading of cashew nut shell liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 303-313.
    3. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Zihao Zhang & Qiang Li & Xiangkun Wu & Claire Bourmaud & Dionisios G. Vlachos & Jeremy Luterbacher & Andras Bodi & Patrick Hemberger, 2024. "A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Santos, Bruna Stella De Freitas & Palacios-Bereche, Milagros Cecilia & Gallego, Antonio Garrido & Nebra, Silvia Azucena & Palacios-Bereche, Reynaldo, 2024. "Energy assessment and heat integration of biofuel production from bio-oil produced through fast pyrolysis of sugarcane straw, and its upgrading via hydrotreatment," Renewable Energy, Elsevier, vol. 232(C).
    7. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    8. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
    9. Francisco Rodríguez & Yuby Cruz & Idoia Estiati & Juan F. Saldarriaga, 2019. "Kinetic Study of Corn and Sugarcane Waste Oxidative Pyrolysis," Energies, MDPI, vol. 12(23), pages 1-14, December.
    10. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    11. Zhao, Yudi & Guo, Xuan & Fang, Yunming, 2024. "Coprocessing of cashew nut shell liquid and phenol model compounds with VGO in a pilot-scale FCC riser," Energy, Elsevier, vol. 307(C).
    12. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    13. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    14. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    15. Guan, Weixiang & Chen, Xiao & Zhang, Jie & Hu, Haoquan & Liang, Changhai, 2020. "Catalytic transfer hydrogenolysis of lignin α-O-4 model compound 4-(benzyloxy)phenol and lignin over Pt/HNbWO6/CNTs catalyst," Renewable Energy, Elsevier, vol. 156(C), pages 249-259.
    16. Amarasekara, Ananda S. & Gutierrez Reyes, Cristian D., 2019. "Brønsted acidic ionic liquid catalyzed one-pot conversion of cellulose to furanic biocrude and identification of the products using LC-MS," Renewable Energy, Elsevier, vol. 136(C), pages 352-357.
    17. Wang, Zhiwei & Li, Zaifeng & Lei, Tingzhou & Yang, Miao & Qi, Tian & Lin, Lu & Xin, Xiaofei & Ajayebi, Atta & Yang, Yantao & He, Xiaofeng & Yan, Xiaoyu, 2016. "Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate," Applied Energy, Elsevier, vol. 183(C), pages 170-181.
    18. Huimin Zhong & Jiayan Zhou & Mohamed Abdelrahman & Hao Xu & Zian Wu & Luncheng Cui & Zhenhua Ma & Liguo Yang & Xiang Li, 2021. "The Effect of Lignin Composition on Ruminal Fiber Fractions Degradation from Different Roughage Sources in Water Buffalo ( Bubalus bubalis )," Agriculture, MDPI, vol. 11(10), pages 1-15, October.
    19. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    20. Mei Yin Ong & Saifuddin Nomanbhay & Fitranto Kusumo & Raja Mohamad Hafriz Raja Shahruzzaman & Abd Halim Shamsuddin, 2021. "Modeling and Optimization of Microwave-Based Bio-Jet Fuel from Coconut Oil: Investigation of Response Surface Methodology (RSM) and Artificial Neural Network Methodology (ANN)," Energies, MDPI, vol. 14(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.