IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032857.html
   My bibliography  Save this article

Power increase potential of coal-fired power plant assisted by the heat release of the thermal energy storage system: Restrictions and thermodynamic performance

Author

Listed:
  • Miao, Lin
  • Yan, Hui
  • Liu, Ming

Abstract

The integration of a thermal energy storage (TES) system is an effective way to improve the load cycling rate of coal-fired power plants (CFPPs). To evaluate the power increase potential and thermodynamic performance of CFPP supplied by heat release of the molten salt TES system, eight discharging modes for CFPP integrated with the TES system including steam injection, heater bypass, and additional turbine schemes were comparatively evaluated. The system simulation models of the integrated systems were developed and the thermodynamic performance of the proposed system were evaluated. Results show that the mode SI-HPT (high-pressure turbine steam injection) has the largest output power increase of 25.00 % under the benchmark condition of 75%THA, but the mode HB-LPH (low-pressure heater bypass) shows a very low output power increase of 2.08 %. Moreover, the power generation efficiency is changed by the external heat source through a change in the average heat absorption temperature of the Rankine cycle and the internal irreversibility of the steam/water cycle. Under the typical benchmark discharging condition of 75%THA, the power generation efficiency of the turbine in mode SI-LPT (low-pressure turbine steam injection) can be reduced from 47.41 % to 44.15 %, but it can be increased from 47.41 % to 48.86 % in mode SI-HPT. When the temperature ranges of the TES system are above 600 °C and below 450 °C, the modes SI-HPT and SI-LPT obtain the optimal comprehensive performance, respectively. This study can provide the scientific guidance for retrofit for CFPP to achieve efficient and flexible design.

Suggested Citation

  • Miao, Lin & Yan, Hui & Liu, Ming, 2024. "Power increase potential of coal-fired power plant assisted by the heat release of the thermal energy storage system: Restrictions and thermodynamic performance," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032857
    DOI: 10.1016/j.energy.2024.133509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.