IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035260.html
   My bibliography  Save this article

Dynamic characteristics and economic analysis of a coal-fired power plant integrated with molten salt thermal energy storage for improving peaking capacity

Author

Listed:
  • Zhang, Qijun
  • Dong, Jianning
  • Chen, Heng
  • Feng, Fuyuan
  • Xu, Gang
  • Wang, Xiuyan
  • Liu, Tong

Abstract

Improving the peaking capacity of coal-fired units is imperative to ensure the stability of the power grid, thus facilitating the grid integration and popularization of large-scale renewable energy. To address this issue, this paper introduces a new concept that combines molten salt energy storage with coal-fired power plants. The proposed design consists of extracting a portion of steam from the turbine side and adjusting the extracted steam mass flow rate by adjusting the valve opening to improve the dynamic characteristics of a coal-fired power plant in terms of both increasing the peaking depth and peaking speed. A coal-fired boiler with integrated thermal energy storage was dynamically modeled using Dymola and its accuracy was verified. The results show that the highest equivalent round-trip efficiency is achieved by extracting from the main steam and discharging into the feedwater during charging process and from reheater1 and discharging into the feedwater during discharging process; The peaking potential during charging and discharging is 12.83 % Pe and 6.86 % Pe respectively, with maximum peaking rates of 9.27 % Pe/min and 5.11 % Pe/min respectively, and the optimal peaking method is also proposed according to the different peaking situations. The total cost of equipment and materials to retrofit the conventional coal-fired units was 19,948,193 USD and the levelized cost of delivery was 151.29 USD/MWh.

Suggested Citation

  • Zhang, Qijun & Dong, Jianning & Chen, Heng & Feng, Fuyuan & Xu, Gang & Wang, Xiuyan & Liu, Tong, 2024. "Dynamic characteristics and economic analysis of a coal-fired power plant integrated with molten salt thermal energy storage for improving peaking capacity," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035260
    DOI: 10.1016/j.energy.2023.130132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qingxiang & Chen, Zhichao & Li, Liankai & Zeng, Lingyan & Li, Zhengqi, 2020. "Achievement in ultra-low-load combustion stability for an anthracite- and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications," Energy, Elsevier, vol. 192(C).
    2. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
    3. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    4. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    5. Michael Krüger & Selman Muslubas & Thomas Loeper & Freerk Klasing & Philipp Knödler & Christian Mielke, 2020. "Potentials of Thermal Energy Storage Integrated into Steam Power Plants," Energies, MDPI, vol. 13(9), pages 1-13, May.
    6. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    7. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    8. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    9. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    10. Bernagozzi, Marco & Panesar, Angad S. & Morgan, Robert, 2019. "Molten salt selection methodology for medium temperature liquid air energy storage application," Applied Energy, Elsevier, vol. 248(C), pages 500-511.
    11. You, C.F. & Xu, X.C., 2010. "Coal combustion and its pollution control in China," Energy, Elsevier, vol. 35(11), pages 4467-4472.
    12. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    13. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    14. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    15. Xin, Yong-Lin & Zhao, Tian & Chen, Xi & He, Ke-Lun & Ma, Huan & Chen, Qun, 2022. "Heat current method-based real-time coordination of power and heat generation of multi-CHP units with flexibility retrofits," Energy, Elsevier, vol. 252(C).
    16. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    2. Ma, Tingshan & Li, Zhengkuan & Lv, Kai & Chang, Dongfeng & Hu, Wenshuai & Zou, Ying, 2024. "Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system," Energy, Elsevier, vol. 288(C).
    3. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    4. Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
    5. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    6. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    7. Wang, Di & Zhou, Yu & Si, Long & Sun, Lingfang & Zhou, Yunlong, 2024. "Performance study of 660 MW coal-fired power plant coupled transcritical carbon dioxide energy storage cycle: Sensitivity and dynamic characteristic analysis," Energy, Elsevier, vol. 293(C).
    8. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    9. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    10. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
    12. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    13. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    14. Handrea Bernando Tambunan & Dzikri Firmansyah Hakam & Iswan Prahastono & Anita Pharmatrisanti & Andreas Putro Purnomoadi & Siti Aisyah & Yonny Wicaksono & I Gede Ryan Sandy, 2020. "The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System," Energies, MDPI, vol. 13(22), pages 1-22, November.
    15. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Çam, Eren, 2020. "Optimal Dispatch of a Coal-Fired Power Plant with Integrated Thermal Energy Storage," EWI Working Papers 2020-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    17. Miao, Lin & Liu, Ming & Zhang, Kezhen & Zhao, Yongliang & Yan, Junjie, 2023. "Energy, exergy, and economic analyses on coal-fired power plants integrated with the power-to-heat thermal energy storage system," Energy, Elsevier, vol. 284(C).
    18. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    19. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    20. Califano, M. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2022. "Optimal heat and power management of a reversible solid oxide cell based microgrid for effective technoeconomic hydrogen consumption and storage," Applied Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.