IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp795-807.html
   My bibliography  Save this article

Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya

Author

Listed:
  • Ehtiwesh, Amin
  • Kutlu, Cagri
  • Su, Yuehong
  • Riffat, Saffa

Abstract

This study aims to build a dynamic model of a direct steam generation (DSG) solar power system coupled with a steam accumulator to meet electricity demands for a hospital under transient environmental conditions in Libya. The main components of the system are DSG parabolic trough collectors, a steam accumulator, a turbine, a condenser and a circulation pump. The system is modelled via using Simulink\Simscape software blocks with integrated MATLAB functions to run a dynamic simulation. As the simulation tool reflects the transient operation of the components, advanced control strategies were applied to the model. Using the proportional integral controller (PI controller), safe operation of the system is secured by pump flow rate control, safe turbine operation is provided by pressure control and power output is matched with the demand by using a throttle valve control. 1584 m2 solar collector area and 160 m3 total volume of pressurized steam tank are used in the simulation considering the electricity demand of the hospital and solar radiation in the location. The produced work output was controlled to match the demand profile of the hospital, which needs 200 kW in the peak period and 50 kW at the night. The designed system shows a maximum thermal efficiency of 23.5% for the operation condition.

Suggested Citation

  • Ehtiwesh, Amin & Kutlu, Cagri & Su, Yuehong & Riffat, Saffa, 2023. "Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya," Renewable Energy, Elsevier, vol. 206(C), pages 795-807.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:795-807
    DOI: 10.1016/j.renene.2023.02.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123002264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    2. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    3. Hoffmann, J.E. & Dall, E.P., 2018. "Integrating desalination with concentrating solar thermal power: A Namibian case study," Renewable Energy, Elsevier, vol. 115(C), pages 423-432.
    4. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    5. Arteconi, Alessia & Del Zotto, Luca & Tascioni, Roberto & Cioccolanti, Luca, 2019. "Modelling system integration of a micro solar Organic Rankine Cycle plant into a residential building," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Li, Lu & Sun, Jie & Li, Yinshi & He, Ya-Ling & Xu, Haojie, 2019. "Transient characteristics of a parabolic trough direct-steam-generation process," Renewable Energy, Elsevier, vol. 135(C), pages 800-810.
    7. Aghaziarati, Zeinab & Aghdam, Abolfazl Hajizadeh, 2021. "Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle," Renewable Energy, Elsevier, vol. 164(C), pages 1267-1283.
    8. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    9. Li, Jing & Li, Pengcheng & Gao, Guangtao & Pei, Gang & Su, Yuehong & Ji, Jie, 2017. "Thermodynamic and economic investigation of a screw expander-based direct steam generation solar cascade Rankine cycle system using water as thermal storage fluid," Applied Energy, Elsevier, vol. 195(C), pages 137-151.
    10. Tiba, Chigueru & Bezerra Azevedo, Veronica Wilma & Paes, Marcos Diego A.C. & Souza, Leonardo F.L. de, 2022. "Mapping the potential for a combined generation of electricity and industrial process heat in the northeast of Brazil - Case study: Bahia," Renewable Energy, Elsevier, vol. 199(C), pages 672-686.
    11. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    12. Orumiyehei, Aida & Ameri, Mehran & Nobakhti, Mohammad Hasan & Zareh, Masud & Edalati, Saeed, 2022. "Transient simulation of hybridized system: Waste heat recovery system integrated to ORC and Linear Fresnel collectors from energy and exergy viewpoint," Renewable Energy, Elsevier, vol. 185(C), pages 172-186.
    13. Li, Jing & Li, Pengcheng & Pei, Gang & Alvi, Jahan Zeb & Ji, Jie, 2016. "Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander," Applied Energy, Elsevier, vol. 165(C), pages 627-638.
    14. Mousa, M.A. & Saleh Ibrahim, I.M. & Molokhia, I.M., 1998. "Comparative study in supplying electrical energy to small remote loads in Libya," Renewable Energy, Elsevier, vol. 14(1), pages 135-140.
    15. Naminezhad, Alireza & Mehregan, Mahmood, 2022. "Energy and exergy analyses of a hybrid system integrating solar-driven organic Rankine cycle, multi-effect distillation, and reverse osmosis desalination systems," Renewable Energy, Elsevier, vol. 185(C), pages 888-903.
    16. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Zhang, Kezhen & Liu, Jiping & Yan, Junjie, 2022. "Thermodynamic analysis on a novel bypass steam recovery system for parabolic trough concentrated solar power plants during start-up processes," Renewable Energy, Elsevier, vol. 198(C), pages 973-983.
    17. Lei, Dongqiang & Fu, Xuqiang & Ren, Yucong & Yao, Fangyuan & Wang, Zhifeng, 2019. "Temperature and thermal stress analysis of parabolic trough receivers," Renewable Energy, Elsevier, vol. 136(C), pages 403-413.
    18. Li, Pengcheng & Li, Jing & Gao, Guangtao & Pei, Gang & Su, Yuehong & Ji, Jie & Ye, Bin, 2017. "Modeling and optimization of solar-powered cascade Rankine cycle system with respect to the characteristics of steam screw expander," Renewable Energy, Elsevier, vol. 112(C), pages 398-412.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Iodice & Giuseppe Langella & Amedeo Amoresano, 2020. "Exergetic Analysis of a New Direct Steam Generation Solar Plant Using Screw Expanders," Energies, MDPI, vol. 13(3), pages 1-19, February.
    2. Balali, Adel & Asadabadi, Mohammad Javad Raji & Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Moghimi, Mahdi, 2023. "Development and neural network optimization of a renewable-based system for hydrogen production and desalination," Renewable Energy, Elsevier, vol. 218(C).
    3. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    4. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    6. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    7. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Wang, Chuang & Xing, Ziwen & Sun, Shizhong & He, Zhilong, 2020. "Loss analysis of oil-free twin-screw expanders for recovering energy in fuel cell systems by means of p-θ diagrams," Energy, Elsevier, vol. 201(C).
    9. Raninga, Milan & Mudgal, Anurag & Patel, Vivek & Patel, Jatin, 2024. "Energy, exergy and economic (3E) analysis of solar thermal energy assisted cascade Rankine cycle for reverse osmosis," Energy, Elsevier, vol. 293(C).
    10. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    12. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    13. Guillermo Valencia Ochoa & York Castillo Santiago & Jorge Duarte Forero & Juan B. Restrepo & Alberto Ricardo Albis Arrieta, 2023. "A Comprehensive Comparative Analysis of Energetic and Exergetic Performance of Different Solar-Based Organic Rankine Cycles," Energies, MDPI, vol. 16(6), pages 1-26, March.
    14. Tiwari, Vivek & Rai, Aakash C. & Srinivasan, P., 2021. "Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions," Renewable Energy, Elsevier, vol. 174(C), pages 305-319.
    15. Belgasim, Basim & Aldali, Yasser & Abdunnabi, Mohammad J.R. & Hashem, Gamal & Hossin, Khaled, 2018. "The potential of concentrating solar power (CSP) for electricity generation in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1-15.
    16. Khouya, Ahmed, 2022. "Performance analysis and optimization of a trilateral organic Rankine powered by a concentrated photovoltaic thermal system," Energy, Elsevier, vol. 247(C).
    17. Paolo Iodice & Amedeo Amoresano & Giuseppe Langella & Francesco Saverio Marra, 2024. "Energy Advantages and Thermodynamic Performance of Scheffler Receivers as Thermal Sources for Solar Thermal Power Generation," Energies, MDPI, vol. 17(21), pages 1-17, October.
    18. Wang, Yongqing & Guo, Zhenning & Li, Lu & Gao, Fan & Wang, Ke & An, Bo, 2023. "Thermohydraulic management coupled with flow pattern distinction for concentrating solar direct-steam-generation technology," Renewable Energy, Elsevier, vol. 204(C), pages 114-130.
    19. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    20. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:795-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.