IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033462.html
   My bibliography  Save this article

Flexibility enhancement of combined heat and power unit integrated with source and grid-side thermal energy storage

Author

Listed:
  • Chen, Chengxu
  • Du, Xiaoze
  • Yang, Lizhong
  • Romagnoli, Alessandro

Abstract

The potential of improvement of both overall energy efficiency and penetration of renewable energy for the combined heat and power (CHP) unit was investigated by integrating the source-side and grid-side thermal energy storage (TES) systems simultaneously. The mathematical model of the proposed thermal system was established, with which the flexibility-enhancing features across diverse operating conditions were analyzed. The flexibility improvement rate, heat consumption rate, TES cycle efficiency and energy efficiency were revealed. Moreover, the wind power consumption, coal-savings and net annual revenue of CHP unit integrated with different TES were presented. The results indicated that the flexibility improvement rate of source-side TES, grid-side TES and dual TES is 2.4 %, 21.2 % and 26.2 %, respectively. The heat consumption rate of a CHP unit integrated with source-side TES system is lower compared to that of a traditional CHP unit when power load ratio is below 50 %. The CHP unit integrated with a dual TES system exhibited a maximum increase in wind power accommodation rate of 37.7 % and a maximum reduction in standard coal consumption of 7.7 %. The proposed systems offer a promising approach for enhancing the flexibility of CHP units to accommodate more renewable energy.

Suggested Citation

  • Chen, Chengxu & Du, Xiaoze & Yang, Lizhong & Romagnoli, Alessandro, 2024. "Flexibility enhancement of combined heat and power unit integrated with source and grid-side thermal energy storage," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033462
    DOI: 10.1016/j.energy.2024.133568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.