IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4410-d598820.html
   My bibliography  Save this article

Development and Characterization of Concrete/PCM/Diatomite Composites for Thermal Energy Storage in CSP/CST Applications

Author

Listed:
  • Adio Miliozzi

    (Italian National Agency for New Technology, Energy and Sustainable Development (ENEA), 00123 Rome, Italy)

  • Franco Dominici

    (Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, 05100 Terni, Italy)

  • Mauro Candelori

    (Calcestruzzi Cipiccia Spa, Strada Maratta 70, 05035 Narni, Italy)

  • Elisabetta Veca

    (Italian National Agency for New Technology, Energy and Sustainable Development (ENEA), 00123 Rome, Italy)

  • Raffaele Liberatore

    (Italian National Agency for New Technology, Energy and Sustainable Development (ENEA), 00123 Rome, Italy)

  • Daniele Nicolini

    (Italian National Agency for New Technology, Energy and Sustainable Development (ENEA), 00123 Rome, Italy)

  • Luigi Torre

    (Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, 05100 Terni, Italy)

Abstract

Thermal energy storage (TES) systems for concentrated solar power plants are essential for the convenience of renewable energy sources in terms of energy dispatchability, economical aspects and their larger use. TES systems based on the use of concrete have been demonstrated to possess good heat exchange characteristics, wide availability of the heat storage medium and low cost. Therefore, the purpose of this work was the development and characterization of a new concrete-based heat storage material containing a concrete mix capable of operating at medium–high temperatures with improved performance. In this work, a small amount of shape-stabilized phase change material (PCM) was included, thus developing a new material capable of storing energy both as sensible and latent heat. This material was therefore characterized thermally and mechanically and showed increased thermal properties such as stored energy density (up to +7%, with a temperature difference of 100 °C at an average operating temperature of 250 °C) when 5 wt% of PCM was added. By taking advantage of these characteristics, particularly the higher energy density, thermal energy storage systems that are more compact and economically feasible can be built to operate within a temperature range of approximately 150–350 °C with a reduction, compared to a concrete-only based thermal energy storage system, of approximately 7% for the required volume and cost.

Suggested Citation

  • Adio Miliozzi & Franco Dominici & Mauro Candelori & Elisabetta Veca & Raffaele Liberatore & Daniele Nicolini & Luigi Torre, 2021. "Development and Characterization of Concrete/PCM/Diatomite Composites for Thermal Energy Storage in CSP/CST Applications," Energies, MDPI, vol. 14(15), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4410-:d:598820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhengguo & Zhang, Ni & Peng, Jing & Fang, Xiaoming & Gao, Xuenong & Fang, Yutang, 2012. "Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 91(1), pages 426-431.
    2. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    3. Romaní, Joaquim & Gasia, Jaume & Solé, Aran & Takasu, Hiroki & Kato, Yukitaka & Cabeza, Luisa F., 2019. "Evaluation of energy density as performance indicator for thermal energy storage at material and system levels," Applied Energy, Elsevier, vol. 235(C), pages 954-962.
    4. Miliozzi, Adio & Chieruzzi, Manila & Torre, Luigi, 2019. "Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material," Applied Energy, Elsevier, vol. 250(C), pages 1023-1035.
    5. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    6. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.
    7. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    8. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    9. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    10. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    11. Leng, Guanghui & Qiao, Geng & Jiang, Zhu & Xu, Guizhi & Qin, Yue & Chang, Chun & Ding, Yulong, 2018. "Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 217(C), pages 212-220.
    12. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
    13. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengcheng Wang & Hongkun Ma & Abdalqader Ahmad & Hui Yang & Mingxi Ji & Boyang Zou & Binjian Nie & Jie Chen & Lige Tong & Li Wang & Yulong Ding, 2022. "Discharging Behavior of a Fixed-Bed Thermochemical Reactor under Different Charging Conditions: Modelling and Experimental Validation," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miliozzi, Adio & Chieruzzi, Manila & Torre, Luigi, 2019. "Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material," Applied Energy, Elsevier, vol. 250(C), pages 1023-1035.
    2. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    4. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Liu, Huan & Jing, Jianwei & Liu, Jianxin & Wang, Xiaodong, 2024. "Sugar alcohol-based phase change materials for thermal energy storage: Optimization design and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Zeneli, M. & Malgarinos, I. & Nikolopoulos, A. & Nikolopoulos, N. & Grammelis, P. & Karellas, S. & Kakaras, E., 2019. "Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures," Applied Energy, Elsevier, vol. 242(C), pages 837-853.
    8. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    9. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    11. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Yu, Qinghua & Jiang, Zhu & Cong, Lin & Lu, Tiejun & Suleiman, Bilyaminu & Leng, Guanghui & Wu, Zhentao & Ding, Yulong & Li, Yongliang, 2019. "A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 237(C), pages 367-377.
    14. Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications," Applied Energy, Elsevier, vol. 265(C).
    15. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    16. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Pavangat, Athul & Bindhani, Omkar Satyaprakash & Naik, B. Kiran, 2023. "Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate," Energy, Elsevier, vol. 263(PE).
    18. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    19. Zuo, Xiaochao & Li, Jianwen & Zhao, Xiaoguang & Yang, Huaming & Chen, Deliang, 2020. "Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 152(C), pages 579-589.
    20. Qi Xia & Shuaiming Feng & Mingmin Kong & Chen Chen, 2021. "Efficiency Enhancement of an Ammonia-Based Solar Thermochemical Energy Storage System Implemented with Hydrogen Permeation Membrane," Sustainability, MDPI, vol. 13(22), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4410-:d:598820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.