IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032122.html
   My bibliography  Save this article

Numerical study of effects on combustion characteristics and emissions of an X-type rotary engine by ignition location under wide open throttle conditions

Author

Listed:
  • Zou, Run
  • Li, Liangyu
  • Yang, Wei
  • Liu, Jinxiang
  • Li, Feng
  • Zhang, Lei

Abstract

The coupling of ignition position with chamber structure significantly affects combustion performance of an X-rotary engine (XRE). In the work, a three-dimensional simulation model of the XRE was established, and effects of ignition location on combustion characteristics and emissions were numerically investigated. Results showed that at the later stage of compression stroke, a complex vortex was formed in the recess of the XRE at medium to high engine speeds, which significantly affected ignition kernel development and flame propagation. The ignition location situated in the middle of the recess accelerated flame propagation by fully utilizing surrounding space and higher velocity field formed at the transition between the vortex and the vortex-free flow field, thus significantly shortening combustion duration. Meanwhile, this ignition scenario had the largest peak pressure, which increased by more than 30% over the worst scenario. Moreover, this ignition scenario had higher indicated thermal efficiency and indicated mean effective pressure at high-speed conditions, but also higher NOx generation. Peak pressure was reduced with increasing engine speed. The maximum peak pressure at 4500 RPM was 26.2% lower than that at 1500 RPM. Notably, ignition location had a slight effect on formations of Soot and CO in the XRE.

Suggested Citation

  • Zou, Run & Li, Liangyu & Yang, Wei & Liu, Jinxiang & Li, Feng & Zhang, Lei, 2024. "Numerical study of effects on combustion characteristics and emissions of an X-type rotary engine by ignition location under wide open throttle conditions," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032122
    DOI: 10.1016/j.energy.2024.133436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Huichao & Ye, Xianlei & Zou, Run & Wang, Nana & Liu, Jinxiang, 2022. "Comparative study on ignition and combustion between conventional spark-ignition method and near-wall surface ignition method for small-scale Wankel rotary engine," Energy, Elsevier, vol. 255(C).
    2. Fontana, G. & Galloni, E., 2010. "Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation," Applied Energy, Elsevier, vol. 87(7), pages 2187-2193, July.
    3. Chang, Ke & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu & Meng, Hao & Liu, Dianqing, 2023. "Numerical investigation of the synchronous and asynchronous changes of ignition timing in a double spark plugs direct injection rotary engine," Energy, Elsevier, vol. 268(C).
    4. Zou, Run & Li, Yuan & Liu, Jinxiang & Wang, Nana & Zeng, Qinghan & Li, Jiong, 2023. "Numerical study on the effects of spark strategies on knocking combustion in a downsized gasoline rotary engine," Energy, Elsevier, vol. 263(PD).
    5. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Bao, Jianhui & Yang, Jinxin, 2019. "Numerical study on ignition amelioration of a hydrogen-enriched Wankel engine under lean-burn condition," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Yue Wang & Xin Zhang & Xinmiao Fan & Yanfei Li, 2023. "Simulation and Research of Methane Premixed Combustion Characteristics Based on Constant Volume Combustion Chamber with Different Ignition Modes," Energies, MDPI, vol. 16(20), pages 1-21, October.
    3. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    4. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    5. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    6. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    7. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Karimkashi, S. & Vuorinen, V., 2019. "Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds," Applied Energy, Elsevier, vol. 250(C), pages 801-820.
    8. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    9. Liu, Changpeng & Wang, Zhi & Song, Heping & Qi, Yunliang & Li, Yanfei & Li, Fubai & Zhang, Wang & He, Xin, 2018. "Experimental and numerical investigation on H2/CO formation and their effects on combustion characteristics in a natural gas SI engine," Energy, Elsevier, vol. 143(C), pages 597-605.
    10. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
    11. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    12. Knop, Vincent & Michel, Jean-Baptiste & Colin, Olivier, 2011. "On the use of a tabulation approach to model auto-ignition during flame propagation in SI engines," Applied Energy, Elsevier, vol. 88(12), pages 4968-4979.
    13. Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
    14. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    15. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
    16. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    17. Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
    18. George M. Kosmadakis & Constantine D. Rakopoulos, 2019. "A Fast CFD-Based Methodology for Determining the Cyclic Variability and Its Effects on Performance and Emissions of Spark-Ignition Engines," Energies, MDPI, vol. 12(21), pages 1-15, October.
    19. Shi, Cheng & Chai, Sen & Di, Liming & Ji, Changwei & Ge, Yunshan & Wang, Huaiyu, 2023. "Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to wankel engine," Energy, Elsevier, vol. 263(PC).
    20. Yan, Xiaodong & Feng, Huihua & Zuo, Zhengxing & Zhang, Zhiyuan & Wu, Limin & Shi, Cheng, 2021. "A study on the working characteristics of free piston linear generator with dual cylinder configuration by different secondary injection strategies," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.