Author
Listed:
- Li, Gang
- Englezos, Peter
- Sun, Duo
- Li, Xiao-Sen
- Lv, Qiu-Nan
- Weng, Yi-Fan
Abstract
The storage of CO2 in gas hydrate form in the pore space in depleted natural gas reservoirs has been considered a method for greenhouse gas control. The formation of CO2 hydrate in porous medium is a strongly coupled Thermal-Hydraulic-Chemical (THC) problem under certain thermodynamic conditions. In this study, laboratory data on CO2 hydrate formation in silica sand, including the profiles of pressure, temperature, the amount of CO2, H2O, and CO2 hydrate, etc., were compared with results from numerical simulations. The minimized deviations between the simulation and experimental results, including the pressure drop, the significant temperature increase caused by hydrate formation, and the amount of CO2, water, and hydrate, were all less than 10 % in the numerical simulations. The sensitivities of the deviations between numerical simulations and experimental data to the domain discretization, thermal conductivity of the silica sand, absolute permeability, and kinetics of CO2 hydrate formation were analyzed. One of the major findings is that CO2 hydrate formation in the porous medium in this study is dominated by the kinetics of chemical reaction, rather than the heat or mass transfer. Another key finding of this study is the acquisition of the modeling parameters of the CO2 storage process in the laboratory-scale sand reservoir, including the thermal conductivity of the silica sand λs = 2.2 W/m/K, the absolute permeability k0 = 3.0 × 10−11 m2, and the kinetic constant Kf0 = 8.4 × 1011 kg/m2/Pa/s and the reduction exponent β = 5.3 in the kinetic model of CO2 hydrate formation. It is noteworthy that the mathematical models and the parameters faithfully fit three independent experiments of Run 1–3. The results of the experiments and corresponding numerical simulations provide a reliable method to evaluate the capacity, technical and commercial feasibility of CO2 storage in marine and permafrost reservoirs.
Suggested Citation
Li, Gang & Englezos, Peter & Sun, Duo & Li, Xiao-Sen & Lv, Qiu-Nan & Weng, Yi-Fan, 2024.
"Simulation of CO2 hydrate formation in porous medium and comparison with laboratory trial data,"
Energy, Elsevier, vol. 310(C).
Handle:
RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029992
DOI: 10.1016/j.energy.2024.133224
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029992. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.