IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023616.html
   My bibliography  Save this article

Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network

Author

Listed:
  • Zhong, Xiuping
  • Pan, Dongbin
  • Zhu, Ying
  • Wang, Yafei
  • Tu, Guigang
  • Nie, Shuaishuai
  • Ma, Yingrui
  • Liu, Kunyan
  • Chen, Chen

Abstract

In this study, the productivity of depressurisation combined with thermal stimulation using the injection-production mode (D + Ti) in a CH-Bk reservoir (a natural gas hydrate reservoir exhibiting a low permeability and lack of impermeable boundaries) was explored. By exploring the influence of production parameters and well patterns on hydrate development, the challenges faced in the development of D + Ti and its commercial production potential were explored. Furthermore, the stimulation potential of the fracture network on D + Ti was investigated. The results showed that the interlayer contradiction and the low methane flow capacity between the injection-production well led to poor production ability and insensitivity to production parameters for D + Ti. The permeable caprocks limited the well pattern infilling potential of D + Ti. These defects made it impossible for D + Ti to obtain commercial production in the CH-Bk reservoir. The fracture network significantly improved the productivity and well pattern infilling potential of D + Ti. In particular, the gas production rate and production degree of the five-spot well increased by 6.5 and 7 times, respectively, after network fracturing, reaching commercial standards. Thus, D + Ti combined with network fracturing can be a promising mode for CH-Bk development. This study can provide meaningful guidance for future CH-Bk trial production and commercial development.

Suggested Citation

  • Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Tu, Guigang & Nie, Shuaishuai & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2022. "Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023616
    DOI: 10.1016/j.energy.2021.122113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    2. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    3. Gang Li & Xiao-Sen Li & Keni Zhang & Bo Li & Yu Zhang, 2013. "Effects of Impermeable Boundaries on Gas Production from Hydrate Accumulations in the Shenhu Area of the South China Sea," Energies, MDPI, vol. 6(8), pages 1-19, August.
    4. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    5. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    6. Chen Chen & Lin Yang & Rui Jia & Youhong Sun & Wei Guo & Yong Chen & Xitong Li, 2017. "Simulation Study on the Effect of Fracturing Technology on the Production Efficiency of Natural Gas Hydrate," Energies, MDPI, vol. 10(8), pages 1-16, August.
    7. Vedachalam, N. & Ramesh, S. & Srinivasalu, S. & Rajendran, G. & Ramadass, G.A. & Atmanand, M.A., 2016. "Assessment of methane gas production from Indian gas hydrate petroleum systems," Applied Energy, Elsevier, vol. 168(C), pages 649-660.
    8. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    9. Li, Bo & Li, Xiao-Sen & Li, Gang & Feng, Jing-Chun & Wang, Yi, 2014. "Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 129(C), pages 274-286.
    10. Jiang, Xingxing & Li, Shuxia & Zhang, Lina, 2012. "Sensitivity analysis of gas production from Class I hydrate reservoir by depressurization," Energy, Elsevier, vol. 39(1), pages 281-285.
    11. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium," Applied Energy, Elsevier, vol. 230(C), pages 444-459.
    12. Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Ji, Yunkai & Xia, Zhizeng & Xu, Boyue, 2018. "Stage analysis and production evaluation for class III gas hydrate deposit by depressurization," Energy, Elsevier, vol. 165(PB), pages 501-511.
    13. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    15. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Gu, Yuhang & Li, Yanlong & Cao, Xinxin & Mao, Peixiao & Liu, Tianle & Qin, Shunbo & Jiang, Guosheng, 2023. "Gas recovery from silty hydrate reservoirs by using vertical and horizontal well patterns in the South China Sea: Effect of well spacing and its optimization," Energy, Elsevier, vol. 275(C).
    2. Lin, Decai & Lu, Jingsheng & Liu, Jia & Liang, Deqing & Li, Dongliang & Jin, Guangrong & Xia, Zhiming & Li, Xiaosen, 2023. "Numerical study on natural gas hydrate production by hot water injection combined with depressurization," Energy, Elsevier, vol. 282(C).
    3. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    4. Guo, Wei & Zhong, Xiuping & Chen, Chen & Zhang, Pengyu & Liu, Zhao & Wang, Yuan & Tu, Guigang, 2024. "Stimulation effect of network fracturing combined with sealing boundaries on the depressurization development of hydrate reservoir in China's offshore test site," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    2. Guo, Wei & Zhong, Xiuping & Chen, Chen & Zhang, Pengyu & Liu, Zhao & Wang, Yuan & Tu, Guigang, 2024. "Stimulation effect of network fracturing combined with sealing boundaries on the depressurization development of hydrate reservoir in China's offshore test site," Energy, Elsevier, vol. 302(C).
    3. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    4. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    5. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    6. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    7. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    8. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    9. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    10. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    11. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    12. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    13. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    15. Li, Shuxia & Wu, Didi & Wang, Xiaopu & Hao, Yongmao, 2021. "Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens," Energy, Elsevier, vol. 232(C).
    16. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).
    17. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    18. Sun, Zhen-Feng & Li, Nan & Jia, Shuai & Cui, Jin-Long & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap," Applied Energy, Elsevier, vol. 240(C), pages 842-850.
    19. Chen, Bingbing & Liu, Zheyuan & Sun, Huiru & Zhao, Guojun & Sun, Xiang & Yang, Mingjun, 2021. "The synthetic effect of traditional-thermodynamic-factors (temperature, salinity, pressure) and fluid flow on natural gas hydrate recovery behaviors," Energy, Elsevier, vol. 233(C).
    20. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Zhang, Yu, 2015. "Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir," Applied Energy, Elsevier, vol. 154(C), pages 995-1003.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.