IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v320y2022ics0306261922005979.html
   My bibliography  Save this article

Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea

Author

Listed:
  • Wei, Rupeng
  • Xia, Yongqiang
  • Wang, Zifei
  • Li, Qingping
  • Lv, Xin
  • Leng, Shudong
  • Zhang, Lunxiang
  • Zhang, Yi
  • Xiao, Bo
  • Yang, Shengxiong
  • Yang, Lei
  • Zhao, Jiafei
  • Song, Yongchen

Abstract

Recent field tests to recover natural gas from marine gas hydrate reservoirs in Japan and China have exhibited worldwide attention to this strategic energy form; significant challenges still remain in improving the accumulative gas yield for a better economic efficiency. According to the geological survey in marine hydrate reservoirs, there exists a concomitant free gas layer underlying the gas hydrate reservoir. Consequently, here we propose a new scheme to jointly produce the gases from hydrate layer and its underlying shallow gas layer. It was found that a dual horizontal well deployment respectively in the corresponding two layers could contribute to a 4.1 times cumulative gas yield comparing that of a single vertical well scenario. This implies a remarkable enhancement of gas productivity via making full use of the gases in the shallow gas layer. Notably, a potential risk of interlayer failure could occur upon the great interbedded pressure difference (maximum 10.7 MPa) arising from the varying behavior of pressure propagation in the layers. This can be effectively alleviated by separately controlling the depressurization scheme in different layers; a mild step-wise depressurization was suggested in the more permeable shallow gas layer while the hydrate layer with a lower permeability should experience a sharper pressure drop. This was found beneficial reducing the interbedded pressure difference by about 70% without intervening the gas production. An energy return on investment (EROI) analysis showed a promising positive energy harvest of our optimized layer-dependent pressure scheme. It could be therefore a potential method to be applied in the field tests in the South China Sea to improve the economic efficiency without disturbing the reservoir stability.

Suggested Citation

  • Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922005979
    DOI: 10.1016/j.apenergy.2022.119235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
    2. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    3. Yin, Zhenyuan & Moridis, George & Linga, Praveen, 2019. "On the importance of phase saturation heterogeneity in the analysis of laboratory studies of hydrate dissociation," Applied Energy, Elsevier, vol. 255(C).
    4. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    5. Wang, Bin & Dong, Hongsheng & Fan, Zhen & Liu, Shuyang & Lv, Xin & Li, Qingping & Zhao, Jiafei, 2020. "Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments," Applied Energy, Elsevier, vol. 262(C).
    6. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Linga, Praveen, 2019. "Effectiveness of multi-stage cooling processes in improving the CH4-hydrate saturation uniformity in sandy laboratory samples," Applied Energy, Elsevier, vol. 250(C), pages 729-747.
    7. Wang, Yi & Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2020. "Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus," Applied Energy, Elsevier, vol. 262(C).
    8. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    9. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    10. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    11. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong, 2019. "3D visualization of fluid flow behaviors during methane hydrate extraction by hot water injection," Energy, Elsevier, vol. 188(C).
    12. Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
    13. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    14. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    15. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Han, Han, 2018. "Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system," Applied Energy, Elsevier, vol. 226(C), pages 916-923.
    16. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    17. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    18. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    19. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    20. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    21. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    22. Zhao, Jiafei & Liu, Yulong & Guo, Xianwei & Wei, Rupeng & Yu, Tianbo & Xu, Lei & Sun, Lingjie & Yang, Lei, 2020. "Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization," Applied Energy, Elsevier, vol. 260(C).
    23. Wang, Yi & Pan, Mengdi & Mayanna, Sathish & Schleicher, Anja M. & Spangenberg, Erik & Schicks, Judith M., 2020. "Reservoir formation damage during hydrate dissociation in sand-clay sediment from Qilian Mountain permafrost, China," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Qi & Li, Xiao-Sen & Chen, Zhao-Yang & Xia, Zhi-Ming & Xiao, Chang-Wen, 2024. "Numerical investigation of production characteristics and interlayer interference during co-production of natural gas hydrate and shallow gas reservoir," Applied Energy, Elsevier, vol. 354(PA).
    2. Liu, Zaixing & Li, Yanghui & Wang, Jiguang & Zhang, Mengmeng & Liu, Weiguo & Lang, Chen & Song, Yongchen, 2022. "Rheological investigation of hydrate slurry with marine sediments for hydrate exploitation," Energy, Elsevier, vol. 259(C).
    3. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    4. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    5. Qu, Aoxing & Guan, Dawei & Jiang, Zhibo & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Sensible heat aided gas production from gas hydrate with an underlying water-rich shallow gas layer," Energy, Elsevier, vol. 284(C).
    6. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    7. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    8. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    9. Shi, Kangji & Wang, Zifei & Jia, Yuxin & Li, Qingping & Lv, Xin & Wang, Tian & Zhang, Lunxiang & Liu, Yu & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2022. "Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea," Energy, Elsevier, vol. 255(C).
    10. Wang, Feifei & Shen, Kaixiang & Zhang, Zhilei & Zhang, Di & Wang, Zhenqing & Wang, Zizhen, 2023. "Numerical simulation of natural gas hydrate development with radial horizontal wells based on thermo-hydro-chemistry coupling," Energy, Elsevier, vol. 272(C).
    11. Lu Yu & Hongfeng Lu & Liang Zhang & Chenlu Xu & Zenggui Kuang & Xian Li & Han Yu & Yejia Wang, 2023. "Assessment of Gas Production from Complex Hydrate System in Qiongdongnan Basin of South China Sea," Energies, MDPI, vol. 16(21), pages 1-25, November.
    12. Guan, Dawei & Qu, Aoxing & Wang, Zifei & Lv, Xin & Li, Qingping & Leng, Shudong & Xiao, Bo & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Fluid flow-induced fine particle migration and its effects on gas and water production behavior from gas hydrate reservoir," Applied Energy, Elsevier, vol. 331(C).
    13. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    14. Zhao, Yang & Qu, Aoxing & Yang, Mingzhao & Dong, Hongsheng & Ge, Yang & Li, Qingping & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Yang, Lei & Song, Yongchen & Zhao, Jiafei, 2024. "Modified balsa wood with natural, flexible porous structure for gas storage," Applied Energy, Elsevier, vol. 353(PA).
    15. Liu, Yanzhen & Qi, Huiping & Liang, Huiyong & Yang, Lei & Lv, Xin & Qiao, Fen & Wang, Junfeng & Liu, Yanbo & Li, Qingping & Zhao, Jiafei, 2024. "Influence mechanism of interfacial organic matter and salt system on carbon dioxide hydrate nucleation in porous media," Energy, Elsevier, vol. 290(C).
    16. Wei, Rupeng & Xia, Yongqiang & Qu, Aoxing & Fan, Qi & Li, Qingping & Lv, Xin & Leng, Shudong & Li, Xingbo & Zhang, Lunxiang & Zhang, Yi & Zhao, Jiafei & Yang, Lei & Sun, Xiang & Song, Yongchen, 2024. "Sustained production of gas hydrate through hybrid depressurization scheme with enhanced energy efficiency and mitigated ice blockage," Energy, Elsevier, vol. 289(C).
    17. Yang, Lei & Guan, Dawei & Qu, Aoxing & Li, Qingping & Ge, Yang & Liang, Huiyong & Dong, Hongsheng & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2023. "Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice," Applied Energy, Elsevier, vol. 331(C).
    18. Feng, Yu & Qu, Aoxing & Han, Yuze & Shi, Changrui & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Effect of gas hydrate formation and dissociation on porous media structure with clay particles," Applied Energy, Elsevier, vol. 349(C).
    19. Jin, Guangrong & Liu, Jie & Su, Zheng & Feng, Chuangji & Cheng, Sanshan & Zhai, Haizhen & Liu, Lihua, 2024. "Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments," Energy, Elsevier, vol. 295(C).
    20. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    2. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    3. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    4. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    5. Jiang, Yujing & Ma, Xianzhuang & Luan, Hengjie & Wu, Xuezhen & Wang, Changsheng & Shan, Qinglin & Cheng, Xianzhen, 2024. "Numerical simulation on natural gas hydrate depressurization production considering sediment compression effects," Energy, Elsevier, vol. 301(C).
    6. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    7. Luo, Tingting & Li, Yanghui & Madhusudhan, B.N. & Sun, Xiang & Song, Yongchen, 2020. "Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery," Applied Energy, Elsevier, vol. 276(C).
    8. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    9. Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
    10. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    11. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    12. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    13. Ouyang, Qian & Pandey, Jyoti Shanker & von Solms, Nicolas, 2022. "Insights into multistep depressurization of CH4/CO2 mixed hydrates in unconsolidated sediments," Energy, Elsevier, vol. 260(C).
    14. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    15. Yin, Zhenyuan & Wan, Qing-Cui & Gao, Qiang & Linga, Praveen, 2020. "Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments," Applied Energy, Elsevier, vol. 271(C).
    16. Wei, Rupeng & Xia, Yongqiang & Qu, Aoxing & Fan, Qi & Li, Qingping & Lv, Xin & Leng, Shudong & Li, Xingbo & Zhang, Lunxiang & Zhang, Yi & Zhao, Jiafei & Yang, Lei & Sun, Xiang & Song, Yongchen, 2024. "Sustained production of gas hydrate through hybrid depressurization scheme with enhanced energy efficiency and mitigated ice blockage," Energy, Elsevier, vol. 289(C).
    17. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    18. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    19. Tinghui Wan & Miao Yu & Hongfeng Lu & Zongheng Chen & Zhanzhao Li & Lieyu Tian & Keliang Li & Ning Huang & Jingli Wang, 2024. "Numerical Simulation of Vertical Well Depressurization with Different Deployments of Radial Laterals in Class 1-Type Hydrate Reservoir," Energies, MDPI, vol. 17(5), pages 1-19, February.
    20. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922005979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.