IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024798.html
   My bibliography  Save this article

Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management

Author

Listed:
  • Zhang, Kai
  • Lau, Hon Chung

Abstract

CO2 has been successfully sequestered in aquifers at shallow water depth as supercritical CO2. However, at a water depth larger than 630 m in tropical regions, there exists a hydrate stability zone (HSZ) extending below the seafloor where CO2 and water can exist as solid CO2 hydrate. It is generally believed that CO2 cannot be stored inside the HSZ as formation of CO2 hydrate will impair CO2 injectivity. In this study, we investigate the feasibility of storing CO2 inside this HSZ by reservoir pressure management vis-à-vis the CO2 hydrate formation pressure through the use of water producers and CO2 injectors.

Suggested Citation

  • Zhang, Kai & Lau, Hon Chung, 2022. "Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024798
    DOI: 10.1016/j.energy.2021.122231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pivezhani, Farzane & Roosta, Hadi & Dashti, Ali & Mazloumi, S. Hossein, 2016. "Investigation of CO2 hydrate formation conditions for determining the optimum CO2 storage rate and energy: Modeling and experimental study," Energy, Elsevier, vol. 113(C), pages 215-226.
    2. Yang, She Hern Bryan & Babu, Ponnivalavan & Chua, Sam Fu Sheng & Linga, Praveen, 2016. "Carbon dioxide hydrate kinetics in porous media with and without salts," Applied Energy, Elsevier, vol. 162(C), pages 1131-1140.
    3. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    4. Olga Ye Zatsepina & Mehran Pooladi‐Darvish, 2011. "Storage of CO 2 hydrate in shallow gas reservoirs: pre‐ and post‐injection periods," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(3), pages 223-236, September.
    5. Jyoti Shanker Pandey & Nicolas von Solms, 2019. "Hydrate Stability and Methane Recovery from Gas Hydrate through CH 4 –CO 2 Replacement in Different Mass Transfer Scenarios," Energies, MDPI, vol. 12(12), pages 1-20, June.
    6. Koide, H. & Takahashi, M. & Shindo, Y. & Tazaki, Y. & Iijima, M. & Ito, K. & Kimura, N. & Omata, K., 1997. "Hydrate formation in sediments in the sub-seabed disposal of CO2," Energy, Elsevier, vol. 22(2), pages 279-283.
    7. Aya, I. & Yamane, K. & Nariai, H., 1997. "Solubility of CO2 and density of CO2 hydrate at 30 MPa," Energy, Elsevier, vol. 22(2), pages 263-271.
    8. Kristine Horvat & Prasad Kerkar & Keith Jones & Devinder Mahajan, 2012. "Kinetics of the Formation and Dissociation of Gas Hydrates from CO 2 -CH 4 Mixtures," Energies, MDPI, vol. 5(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haval Kukha Hawez & Taimoor Asim, 2024. "Impact of Regional Pressure Dissipation on Carbon Capture and Storage Projects: A Comprehensive Review," Energies, MDPI, vol. 17(8), pages 1-31, April.
    2. Zhou, Xianmin & Wu, Yu-Shu & Chen, Hao & Elsayed, Mahmoud & Yu, Wei & Zhao, Xinrui & Murtaza, Mobeen & Shahzad Kamal, Muhammad & Zafar Khan, Sarmad & Al-Abdrabalnabi, Ridha & Ren, Bo, 2024. "Review of Carbon dioxide utilization and sequestration in depleted oil reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Guo, Yang & Li, Shuxia & Sun, Hao & Wu, Didi & Liu, Lu & Zhang, Ningtao & Qin, Xuwen & Lu, Cheng, 2024. "Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap," Energy, Elsevier, vol. 303(C).
    4. Zhang, Kai & Lau, Hon Chung & Bokka, Harsha Kumar & Hadia, Nanji J., 2022. "Decarbonizing the power and industry sectors in India by carbon capture and storage," Energy, Elsevier, vol. 249(C).
    5. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    6. Weixin Pang & Yang Ge & Mingqiang Chen & Xiaohan Zhang & Huiyun Wen & Qiang Fu & Xin Lei & Qingping Li & Shouwei Zhou, 2024. "Large-Scale Experimental Investigation of Hydrate-Based Carbon Dioxide Sequestration," Energies, MDPI, vol. 17(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Jyoti Shanker Pandey & Yousef Jouljamal Daas & Adam Paul Karcz & Nicolas von Solms, 2020. "Enhanced Hydrate-Based Geological CO 2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change," Energies, MDPI, vol. 13(21), pages 1-28, October.
    4. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    5. Marat K. Khasanov & Guzal R. Rafikova & Nail G. Musakaev, 2020. "Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and Its Gas Hydrate," Energies, MDPI, vol. 13(2), pages 1-17, January.
    6. Kuang, Yangmin & Zhang, Lunxiang & Zheng, Yanpeng, 2022. "Enhanced CO2 sequestration based on hydrate technology with pressure oscillation in porous medium using NMR," Energy, Elsevier, vol. 252(C).
    7. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    8. Burla, Sai Kiran & Pagar, Eti & Veluswamy, Hari Prakash, 2024. "Synergistic CH4 recovery and CO2 sequestration through amino acid-assisted injection in methane hydrate sediments," Energy, Elsevier, vol. 304(C).
    9. Yuji Takagi & Akiko Kaneko & Yutaka Abe & Kenji Yamane, 2012. "Influence of CO2 Hydrate on Liquid CO2 Hydrodynamics for CCS under Ocean Floor," Energy and Environment Research, Canadian Center of Science and Education, vol. 2(1), pages 1-98, June.
    10. Hengjie Luan & Mingkang Liu & Qinglin Shan & Yujing Jiang & Peng Yan & Xiaoyu Du, 2024. "Experimental Study on the Effect of Mixed Thermodynamic Inhibitors with Different Concentrations on Natural Gas Hydrate Synthesis," Energies, MDPI, vol. 17(9), pages 1-16, April.
    11. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    13. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    14. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    15. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    16. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    17. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    18. Fuqin Lu & Xuebing Zhou & Caili Huang & Dongliang Li & Deqing Liang, 2023. "Effect of Residual Water in Sediments on the CO 2 -CH 4 Replacement Process," Energies, MDPI, vol. 16(7), pages 1-16, March.
    19. He, Tianbiao & Xing, Xialian & Xu, Hao & Mao, Ning & Qi, Meng & Zhang, Jibao & Yin, Zhenyuan, 2024. "Towards energy-efficient hydrate-based desalination: A comprehensive study on binary hydrate formers with propane as a promoter," Applied Energy, Elsevier, vol. 375(C).
    20. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.