IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224017626.html
   My bibliography  Save this article

Experimental study of water occurrence in coal under different negative pressure conditions: Implication for CBM productivity during negative pressure drainage

Author

Listed:
  • Dang, Zheng
  • Wang, Xiaoming
  • Bie, Shizhen
  • Su, Xianbo
  • Hou, Shihui

Abstract

To study water occurrence in coal under different negative pressure conditions, two coals (Coal DF and Coal SH) were conducted with NMR and LP-ArAD experiments. Water exists mainly in adsorption pores in the two saturated coals. When the absolute pressure is slightly lower than 0.1 MPa for coals DF and SH, the removed water in seepage pores is 75.7 % and 99.4 %, respectively, but only 5.7 % and 8.7 % in adsorption pores, respectively. When the absolute pressure drops from 0.03 MPa to 1.37x10−4 MPa for coals DF and SH, the water removal rates of adsorption pores are changed from 5.16 % to 87.19 % and from 26.45 % to 57.18 %, respectively. The difference in water migration capacity under variable negative pressure conditions is mainly related to water migration phase. As the absolute pressure decreases below the saturated vapor pressure, the water migration phase changes from liquid to gas, improving the water migration capacity of adsorption pores. The higher gas production rate, the lower water vapor partial pressure. Water tends to migrate in gas phase according to Dalton's law in high production CBM wells, which mitigates water block damage and improves CBM productivity under negative pressure.

Suggested Citation

  • Dang, Zheng & Wang, Xiaoming & Bie, Shizhen & Su, Xianbo & Hou, Shihui, 2024. "Experimental study of water occurrence in coal under different negative pressure conditions: Implication for CBM productivity during negative pressure drainage," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017626
    DOI: 10.1016/j.energy.2024.131989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.