Cyclic pitch control for aerodynamic load reductions of floating offshore wind turbines under pitch motions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132945
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lasheen, Ahmed & Elshafei, Abdel Latif, 2016. "Wind-turbine collective-pitch control via a fuzzy predictive algorithm," Renewable Energy, Elsevier, vol. 87(P1), pages 298-306.
- Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Wen, Binrong & Tian, Xinliang & Zhang, Qi & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 1186-1199.
- Abbas, Nikhar J. & Jasa, John & Zalkind, Daniel S. & Wright, Alan & Pao, Lucy, 2024. "Control co-design of a floating offshore wind turbine," Applied Energy, Elsevier, vol. 353(PB).
- Hawari, Qusay & Kim, Taeseong & Ward, Christopher & Fleming, James, 2022. "A robust gain scheduling method for a PI collective pitch controller of multi-MW onshore wind turbines," Renewable Energy, Elsevier, vol. 192(C), pages 443-455.
- Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
- Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
- López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Sang, Le Quang & Li, Qing’an & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Wang, Xinbao & Zhou, Shuni & Zhang, Fanghong, 2021. "Wind tunnel and numerical study of a floating offshore wind turbine based on the cyclic pitch control," Renewable Energy, Elsevier, vol. 172(C), pages 453-464.
- Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Sang, Le Quang & Takao, Maeda & Kamada, Yasunari & Li, Qing'an, 2017. "Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal inflow wind condition," Energy, Elsevier, vol. 134(C), pages 269-278.
- Civelek, Zafer & Lüy, Murat & Çam, Ertuğrul & Mamur, Hayati, 2017. "A new fuzzy logic proportional controller approach applied to individual pitch angle for wind turbine load mitigation," Renewable Energy, Elsevier, vol. 111(C), pages 708-717.
- Shen, Xin & Zhu, Xiaocheng & Du, Zhaohui, 2011. "Wind turbine aerodynamics and loads control in wind shear flow," Energy, Elsevier, vol. 36(3), pages 1424-1434.
- Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Iida, Kohei & Okumura, Yuta, 2016. "Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism," Energy, Elsevier, vol. 99(C), pages 20-31.
- Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
- Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
- Li, Jianshen & Wang, Shuangxin, 2021. "Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults," Renewable Energy, Elsevier, vol. 174(C), pages 293-304.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Zhou, Le & Shen, Xin & Ma, Lu & Chen, Jiajia & Ouyang, Hua & Du, Zhaohui, 2024. "Unsteady aerodynamics of the floating offshore wind turbine due to the trailing vortex induction and airfoil dynamic stall," Energy, Elsevier, vol. 304(C).
- Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
- Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
- Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
- Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
- Li, Tenghui & Yang, Jin & Ioannou, Anastasia, 2024. "Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning," Renewable Energy, Elsevier, vol. 234(C).
- Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).
- Wang, Xinbao & Cai, Chang & Chen, Yewen & Chen, Yuejuan & Liu, Junbo & Xiao, Yang & Zhong, Xiaohui & Shi, Kezhong & Li, Qing'an, 2023. "Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines," Energy, Elsevier, vol. 283(C).
- Grant, Elenya & Johnson, Kathryn & Damiani, Rick & Phadnis, Mandar & Pao, Lucy, 2023. "Buoyancy can ballast control for increased power generation of a floating offshore wind turbine with a light-weight semi-submersible platform," Applied Energy, Elsevier, vol. 330(PB).
- Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
- Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Li, Zhanwei & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2020. "Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 573-584.
- Fu, Shifeng & Li, Zheng & Zhu, Weijun & Han, Xingxing & Liang, Xiaoling & Yang, Hua & Shen, Wenzhong, 2023. "Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion," Renewable Energy, Elsevier, vol. 205(C), pages 317-325.
- Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
- Pablo Zambrana & Javier Fernandez-Quijano & J. Jesus Fernandez-Lozano & Pedro M. Mayorga Rubio & Alfonso J. Garcia-Cerezo, 2021. "Improving the Performance of Controllers for Wind Turbines on Semi-Submersible Offshore Platforms: Fuzzy Supervisor Control," Energies, MDPI, vol. 14(19), pages 1-17, September.
- Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
- Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
More about this item
Keywords
Floating offshore wind turbine; Cyclic pitch control; Pitching moment; Yawing moment; Pitch motion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224027191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.