IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024763.html
   My bibliography  Save this article

Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines

Author

Listed:
  • Wang, Xinbao
  • Cai, Chang
  • Chen, Yewen
  • Chen, Yuejuan
  • Liu, Junbo
  • Xiao, Yang
  • Zhong, Xiaohui
  • Shi, Kezhong
  • Li, Qing'an

Abstract

Model tests and real-time hybrid simulation tests of floating offshore wind turbines have recently been extensively conducted to explore the aero-hydro-servo-elastic coupling mechanism. The traditional thrust similarity criterion under the Froude scale cannot satisfy the dynamic aerodynamic similarity in the wave basin experiments. Meanwhile, the traditional model wind turbine in model tests shows huge differences in Reynolds number and significant deviations in the optimal tip speed ratio, and the dynamic performance is different from that of the prototype wind turbine. Therefore, a new criterion based on the mapping of the optimal tip speed ratio is proposed, and a new model wind turbine is designed to physically reproduce the dynamic aerodynamics of the prototype wind turbine accurately in wind tunnel experiments. Then the dynamic aerodynamic similarity in this criterion is numerically verified and compared with that in the traditional criterion. The simulation is performed in steady and unsteady inflows by the open-source OpenFAST. The platform motions of the prototype and model wind turbine are inflow-motivated and program-forced, respectively. The calculation results show that the dynamic thrust, power and their coefficients in the new criterion all maintain better similarity compared to those in the traditional criterion. This study is important for wind tunnel model tests and RTHS tests to accurately obtain unsteady aerodynamics, and it can guide the aero-hydro-structure load evaluations and turbine-floater-mooring integrated designs for large-scale floating offshore wind turbines.

Suggested Citation

  • Wang, Xinbao & Cai, Chang & Chen, Yewen & Chen, Yuejuan & Liu, Junbo & Xiao, Yang & Zhong, Xiaohui & Shi, Kezhong & Li, Qing'an, 2023. "Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024763
    DOI: 10.1016/j.energy.2023.129082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Li, Liang & Gao, Yan & Hu, Zhiqiang & Yuan, Zhiming & Day, Sandy & Li, Haoran, 2018. "Model test research of a semisubmersible floating wind turbine with an improved deficient thrust force correction approach," Renewable Energy, Elsevier, vol. 119(C), pages 95-105.
    3. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Yang, Yang & Bashir, Musa & Michailides, Constantine & Li, Chun & Wang, Jin, 2020. "Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 161(C), pages 606-625.
    5. Du, Weikang & Zhao, Yongsheng & He, Yanping & Liu, Yadong, 2016. "Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines," Renewable Energy, Elsevier, vol. 97(C), pages 414-421.
    6. Wang, Lu & Robertson, Amy & Jonkman, Jason & Yu, Yi-Hsiang, 2022. "OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform," Renewable Energy, Elsevier, vol. 187(C), pages 282-301.
    7. Yang, Can & Cheng, Zhengshun & Xiao, Longfei & Tian, Xinliang & Liu, Mingyue & Wen, Binrong, 2022. "A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins," Renewable Energy, Elsevier, vol. 187(C), pages 144-155.
    8. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Li, Zhanwei & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2020. "Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 573-584.
    9. Sergiienko, N.Y. & da Silva, L.S.P. & Bachynski-Polić, E.E. & Cazzolato, B.S. & Arjomandi, M. & Ding, B., 2022. "Review of scaling laws applied to floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
    3. Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
    4. Yang, Can & Cheng, Zhengshun & Xiao, Longfei & Tian, Xinliang & Liu, Mingyue & Wen, Binrong, 2022. "A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins," Renewable Energy, Elsevier, vol. 187(C), pages 144-155.
    5. Jiang, Yingying & Cheng, Zhengshun & Chen, Peng & Chai, Wei & Xiao, Longfei, 2023. "Performance-scaled rotor design method for model testing of floating vertical axis wind turbines in wave basins," Renewable Energy, Elsevier, vol. 219(P1).
    6. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Cao, Feifei & Yu, Mingqi & Han, Meng & Liu, Bing & Wei, Zhiwen & Jiang, Juan & Tian, Huiyuan & Shi, Hongda & Li, Yanni, 2023. "WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system," Renewable Energy, Elsevier, vol. 219(P2).
    8. Terrero-Gonzalez, Alicia & Dai, Saishuai & Neilson, Richard D. & Papadopoulos, Jim & Kapitaniak, Marcin, 2024. "Dynamic response of a shallow-draft floating wind turbine concept: Experiments and modelling," Renewable Energy, Elsevier, vol. 226(C).
    9. Liu, Qingsong & Bashir, Musa & Iglesias, Gregorio & Miao, Weipao & Yue, Minnan & Xu, Zifei & Yang, Yang & Li, Chun, 2024. "Investigation of aero-hydro-elastic-mooring behavior of a H-type floating vertical axis wind turbine using coupled CFD-FEM method," Applied Energy, Elsevier, vol. 372(C).
    10. Kaminski, Meghan & Loth, Eric & Griffith, D. Todd & Qin, Chao (Chris), 2020. "Ground testing of a 1% gravo-aeroelastically scaled additively-manufactured wind turbine blade with bio-inspired structural design," Renewable Energy, Elsevier, vol. 148(C), pages 639-650.
    11. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    12. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Daniel Duda & Vitalii Yanovych & Volodymyr Tsymbalyuk & Václav Uruba, 2022. "Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV," Energies, MDPI, vol. 15(3), pages 1-27, February.
    14. Ali M. H. A. Khajah & Simon P. Philbin, 2022. "Techno-Economic Analysis and Modelling of the Feasibility of Wind Energy in Kuwait," Clean Technol., MDPI, vol. 4(1), pages 1-21, January.
    15. Kaminski, Meghan & Simpson, Juliet & Loth, Eric & Fingersh, Lee Jay & Scholbrock, Andy & Johnson, Nick & Johnson, Kathryn & Pao, Lucy & Griffith, Todd, 2023. "Gravo-aeroelastically-scaled demonstrator field tests to represent blade response of a flexible extreme-scale downwind turbine," Renewable Energy, Elsevier, vol. 218(C).
    16. Zhang, Dan & Wu, Zhenglong & Chen, Yaoran & Kuang, Limin & Peng, Yan & Zhou, Dai & Tu, Yu, 2024. "Full-scale vs. scaled aerodynamics of 5-MW offshore VAWTs under pitch motion: A numerical analysis," Applied Energy, Elsevier, vol. 372(C).
    17. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    18. Deng, Sijia & Liu, Yingyi & Ning, Dezhi, 2023. "Fully coupled aero-hydrodynamic modelling of floating offshore wind turbines in nonlinear waves using a direct time-domain approach," Renewable Energy, Elsevier, vol. 216(C).
    19. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
    20. Daniel Duda & Václav Uruba & Vitalii Yanovych, 2021. "Wake Width: Discussion of Several Methods How to Estimate It by Using Measured Experimental Data," Energies, MDPI, vol. 14(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.