IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i3p1424-1434.html
   My bibliography  Save this article

Wind turbine aerodynamics and loads control in wind shear flow

Author

Listed:
  • Shen, Xin
  • Zhu, Xiaocheng
  • Du, Zhaohui

Abstract

Wind turbine is subjected to some asymmetrical effects like wind shear, which will lead to unsteady blade airloads and performance. Fatigue loads can lead to damage of turbine components and eventually to failures. It is evident that the variation of the velocity over the rotor disc has an influence on the blade and introduces both flap-wise and edge-wise fatigue damage on the blade as a result of moment fluctuations in the two directions. The flap-wise moments on the blade are the origin of the rotor yaw and tilt moments which transmit to the turbine structure through the drive train to the yaw system and the tower. A lifting surface method with time marching free wake model is used to investigate the periodic unsteady nature in the wind shear. Individual pitch control (IPC) that is applied nowadays is the most advanced active control to reduce the fatigue. The blade airloads and performance of the turbine are also predicted under IPC control. It is found that IPC of the fluctuating blade root flap-wise moment can reduce the flap-wise fatigue damage remarkably while the blade root edge-wise moments are less sensitive to the varying blade pitch than the blade root flap-wise moments.

Suggested Citation

  • Shen, Xin & Zhu, Xiaocheng & Du, Zhaohui, 2011. "Wind turbine aerodynamics and loads control in wind shear flow," Energy, Elsevier, vol. 36(3), pages 1424-1434.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1424-1434
    DOI: 10.1016/j.energy.2011.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Pengfei, 2010. "A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy," Energy, Elsevier, vol. 35(7), pages 2843-2851.
    2. Kishinami, Koki & Taniguchi, Hiroshi & Suzuki, Jun & Ibano, Hiroshi & Kazunou, Takashi & Turuhami, Masato, 2005. "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine," Energy, Elsevier, vol. 30(11), pages 2089-2100.
    3. Rehman, Shafiqur & Al-Abbadi, Naif M., 2008. "Wind shear coefficient, turbulence intensity and wind power potential assessment for Dhulom, Saudi Arabia," Renewable Energy, Elsevier, vol. 33(12), pages 2653-2660.
    4. Lanzafame, R. & Messina, M., 2010. "Power curve control in micro wind turbine design," Energy, Elsevier, vol. 35(2), pages 556-561.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    2. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    3. Liu, Pengfei, 2010. "A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy," Energy, Elsevier, vol. 35(7), pages 2843-2851.
    4. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    5. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    6. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
    7. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    8. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    9. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    10. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    11. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    12. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    13. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    14. Senthil Kumar Madasamy & Vijayanandh Raja & Hussein A Z AL-bonsrulah & Mohammed Al-Bahrani, 2022. "Design, development and multi-disciplinary investigations of aerodynamic, structural, energy and exergy factors on 1 kW horizontal-axis wind turbine [Composite materials for wind power turbine blad," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1292-1318.
    15. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    16. Nak Joon Choi & Sang Hyun Nam & Jong Hyun Jeong & Kyung Chun Kim, 2014. "CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm," Energies, MDPI, vol. 7(11), pages 1-16, November.
    17. Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).
    18. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    19. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    20. Puterbaugh, Martin & Beyene, Asfaw, 2011. "Parametric dependence of a morphing wind turbine blade on material elasticity," Energy, Elsevier, vol. 36(1), pages 466-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1424-1434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.