IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v234y2024ics0960148124013338.html
   My bibliography  Save this article

Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning

Author

Listed:
  • Li, Tenghui
  • Yang, Jin
  • Ioannou, Anastasia

Abstract

This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.

Suggested Citation

  • Li, Tenghui & Yang, Jin & Ioannou, Anastasia, 2024. "Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning," Renewable Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124013338
    DOI: 10.1016/j.renene.2024.121265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124013338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.