IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipbs0306261922015446.html
   My bibliography  Save this article

Buoyancy can ballast control for increased power generation of a floating offshore wind turbine with a light-weight semi-submersible platform

Author

Listed:
  • Grant, Elenya
  • Johnson, Kathryn
  • Damiani, Rick
  • Phadnis, Mandar
  • Pao, Lucy

Abstract

As many countries increase their installed offshore wind capacity, floating offshore wind turbines (FOWTs) are critical to gaining access to deep-water resources where fixed-bottom turbines would not be economically feasible to install. The levelized cost of energy (LCOE) of FOWTs must be minimized to ensure competitiveness with traditional power sources. Innovative substructure designs and advanced control methods can help decrease the LCOE of FOWTs by increasing annual energy production (AEP) and the turbine’s lifetime. LCOE can also be reduced by minimizing capital expenditures and operation and maintenance costs. The novel SpiderFLOAT substructure described in this paper decreases the LCOE through its light-weight and easy-to-manufacture design while providing unique opportunities for platform actuation. Specifically, this paper details the design and testing of a buoyancy can ballast controller to achieve a desired platform pitch angle for increasing AEP while also reducing tower-base fatigue loads and maintaining safe operation. The proposed buoyancy can ballast control is shown to increase AEP by 1.1%, reduce tower-base bending damage equivalent loads (DELs) by up to nearly 9%, reduce maximum platform pitch angles, and not interfere with the baseline controller. The robustness of the proposed controller is tested for misaligned wind and wave direction cases and similarly yields promising performance in the metrics of interest.

Suggested Citation

  • Grant, Elenya & Johnson, Kathryn & Damiani, Rick & Phadnis, Mandar & Pao, Lucy, 2023. "Buoyancy can ballast control for increased power generation of a floating offshore wind turbine with a light-weight semi-submersible platform," Applied Energy, Elsevier, vol. 330(PB).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922015446
    DOI: 10.1016/j.apenergy.2022.120287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Bong-Hee & Ahn, Dong-Joon & Kim, Hyun-Goo & Ha, Young-Cheol, 2012. "An estimation of the extreme wind speed using the Korea wind map," Renewable Energy, Elsevier, vol. 42(C), pages 4-10.
    2. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Shah, Kamran Ali & Meng, Fantai & Li, Ye & Nagamune, Ryozo & Zhou, Yarong & Ren, Zhengru & Jiang, Zhiyu, 2021. "A synthesis of feasible control methods for floating offshore wind turbine system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
    7. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    8. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Petrović, Vlaho & Bottasso, Carlo L., 2017. "Wind turbine envelope protection control over the full wind speed range," Renewable Energy, Elsevier, vol. 111(C), pages 836-848.
    10. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    2. Wang, Lu & Bergua, Roger & Robertson, Amy & Wright, Alan & Zalkind, Daniel & Fowler, Matthew & Lenfest, Eben & Viselli, Anthony & Goupee, Andrew & Kimball, Richard, 2024. "Experimental investigation of advanced turbine control strategies and load-mitigation measures with a model-scale floating offshore wind turbine system," Applied Energy, Elsevier, vol. 355(C).
    3. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    3. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    4. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    5. Chen, Zheng & Sun, Jili & Yang, Jingqing & Sun, Yong & Chen, Qian & Zhao, Hongyang & Qian, Peng & Si, Yulin & Zhang, Dahai, 2024. "Experimental and numerical analysis of power take-off control effects on the dynamic performance of a floating wind-wave combined system," Renewable Energy, Elsevier, vol. 226(C).
    6. Meng, Fantai & Sergiienko, Nataliia & Ding, Boyin & Zhou, Binzhen & Silva, Leandro Souza Pinheiro Da & Cazzolato, Benjamin & Li, Ye, 2023. "Co-located offshore wind–wave energy systems: Can motion suppression and reliable power generation be achieved simultaneously?," Applied Energy, Elsevier, vol. 331(C).
    7. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    10. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
    13. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    14. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Gao, Qiang & Bechlenberg, Alva & Jayawardhana, Bayu & Ertugrul, Nesimi & Vakis, Antonis I. & Ding, Boyin, 2024. "Techno-economic assessment of offshore wind and hybrid wind–wave farms with energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Song, Yupeng & Sun, Tao & Zhang, Zili, 2023. "Fatigue reliability analysis of floating offshore wind turbines considering the uncertainty due to finite sampling of load conditions," Renewable Energy, Elsevier, vol. 212(C), pages 570-588.
    17. He, Zheng-Xia & Xu, Shi-Chun & Shen, Wen-Xing & Zhang, Hui & Long, Ru-Yin & Yang, He & Chen, Hong, 2016. "Review of factors affecting China’s offshore wind power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1372-1386.
    18. Sergiienko, N.Y. & da Silva, L.S.P. & Bachynski-Polić, E.E. & Cazzolato, B.S. & Arjomandi, M. & Ding, B., 2022. "Review of scaling laws applied to floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Jia, Junmei & Yan, Zaizai & Peng, Xiuyun & An, Xiaoyan, 2020. "A new distribution for modeling the wind speed data in Inner Mongolia of China," Renewable Energy, Elsevier, vol. 162(C), pages 1979-1991.
    20. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922015446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.