IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v291y2024ics0360544224000689.html
   My bibliography  Save this article

Proposing hybrid prediction approaches with the integration of machine learning models and metaheuristic algorithms to forecast the cooling and heating load of buildings

Author

Listed:
  • Dasi, He
  • Ying, Zhang
  • Ashab, MD Faisal Bin

Abstract

Accurate prediction of heating and cooling loads in residential buildings is crucial for both researchers and practitioners. This study employs advanced forecasting techniques, utilizing support vector regression and extreme gradient boosting methods, enhanced by state-of-the-art metaheuristic algorithms. The metaheuristic optimizers applied include the Satin Bowerbird Optimizer, Ant Lion Optimizer, Artificial Ecosystem-Based Optimizer, Slime Mold Optimizer, Moth-Flame Optimizer, and Particle Swarm Optimizer. These optimizers are strategically used to refine the forecasting models, optimizing their parameters for increased precision. To evaluate the models, a suite of statistical indices is used, including mean square error, root mean square error, Mean Absolute Percentage Error, Mean Absolute Error, Relative Absolute Error, coefficient of correlation, Coefficient of Determination, and Normalized Mean Square Error. This comprehensive analysis assesses the effectiveness of the forecasting methods. The study's findings highlight that the combination of the Satin Bowerbird Optimizer and extreme gradient boosting is particularly effective, achieving high coefficients of determination for cooling and heating load predictions (0.95826 and 0.938048, respectively). This hybrid algorithm shows remarkable performance, with minimal error values and consistent convergence across various datasets. In summary, this research underscores the efficiency of integrating sophisticated machine learning models with metaheuristic optimization techniques, particularly identifying a potent hybrid algorithm for the accurate prediction of heating and cooling loads in residential buildings.

Suggested Citation

  • Dasi, He & Ying, Zhang & Ashab, MD Faisal Bin, 2024. "Proposing hybrid prediction approaches with the integration of machine learning models and metaheuristic algorithms to forecast the cooling and heating load of buildings," Energy, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:energy:v:291:y:2024:i:c:s0360544224000689
    DOI: 10.1016/j.energy.2024.130297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuan & Wang, Jiangjiang & Wei, Changqi & Li, Yuxin, 2024. "A novel two-stage multi-objective dispatch model for a distributed hybrid CCHP system considering source-load fluctuations mitigation," Energy, Elsevier, vol. 300(C).
    2. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:291:y:2024:i:c:s0360544224000689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.