IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5330-d1192300.html
   My bibliography  Save this article

An Ensemble Framework for Short-Term Load Forecasting Based on TimesNet and TCN

Author

Listed:
  • Chuanhui Zuo

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Jialong Wang

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Mingping Liu

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Suhui Deng

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Qingnian Wang

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

Abstract

Accurate and efficient short-term power load forecasting is crucial for ensuring the stable operation of power systems and rational planning of electricity resources. However, power load data are often characterized by nonlinearity and instability due to external factors such as meteorological conditions and day types, making accurate load forecasting challenging. While some hybrid models can effectively capture the spatiotemporal features of power load data, they often overlook the multi-periodicity of load data, leading to suboptimal feature extraction and efficiency. In this paper, a novel hybrid framework for short-term load forecasting based on TimesNet and temporal convolutional network (TCN) is proposed. Firstly, the original load data are preprocessed to reconstruct a feature matrix. Secondly, the TimesNet transforms the one-dimensional time series into a set of two-dimensional tensors based on multiple periods, capturing dependencies within different time scales and the relationships between different time scales in power load data. Then, the temporal convolutional network is employed to further extract the temporal features and long-term dependencies of the load data, enabling a more global pattern to be obtained for temporal information. Finally, the results of load forecasting can be achieved from the fully connected layer based on the extracted features. To verify the effectiveness and generalization of the proposed model, experiments have been conducted based on the ISO-NE and Southern China datasets. Experimental results show that the proposed model greatly outperforms the long short-term memory (LSTM), TCN, TimesNet, TCN-LSTM, and TimesNet-LSTM models. The proposed model reduces the mean absolute percentage error by 20% to 43% for the ISO-NE dataset and by 10% to 31% for the Southern China dataset, respectively.

Suggested Citation

  • Chuanhui Zuo & Jialong Wang & Mingping Liu & Suhui Deng & Qingnian Wang, 2023. "An Ensemble Framework for Short-Term Load Forecasting Based on TimesNet and TCN," Energies, MDPI, vol. 16(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5330-:d:1192300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Mingping Liu & Xihao Sun & Qingnian Wang & Suhui Deng, 2022. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, MDPI, vol. 15(19), pages 1-22, September.
    3. Weide Li & Xuan Yang & Hao Li & Lili Su, 2017. "Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting," Energies, MDPI, vol. 10(1), pages 1-17, January.
    4. Jemma J. Makrygiorgou & Christos-Spyridon Karavas & Christos Dikaiakos & Ioannis P. Moraitis, 2023. "The Electricity Market in Greece: Current Status, Identified Challenges, and Arranged Reforms," Sustainability, MDPI, vol. 15(4), pages 1-40, February.
    5. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    6. Weili Cai & Wenjuan Zhang & Xiaofeng Hu & Yingchao Liu, 2020. "A hybrid information model based on long short-term memory network for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1497-1510, August.
    7. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    8. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    9. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zain Ahmed & Mohsin Jamil & Ashraf Ali Khan, 2024. "Short-Term Campus Load Forecasting Using CNN-Based Encoder–Decoder Network with Attention," Energies, MDPI, vol. 17(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    2. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    3. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    4. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    5. Zhao, Zhenyu & Zhang, Yao & Yang, Yujia & Yuan, Shuguang, 2022. "Load forecasting via Grey Model-Least Squares Support Vector Machine model and spatial-temporal distribution of electric consumption intensity," Energy, Elsevier, vol. 255(C).
    6. Guillaume Guerard & Hugo Pousseur & Ihab Taleb, 2021. "Isolated Areas Consumption Short-Term Forecasting Method," Energies, MDPI, vol. 14(23), pages 1-23, November.
    7. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    8. Pavlos Nikolaidis & Harris Partaourides, 2021. "A Model Predictive Control for the Dynamical Forecast of Operating Reserves in Frequency Regulation Services," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    9. Gamze Nalcaci & Ayse Özmen & Gerhard Wilhelm Weber, 2019. "Long-term load forecasting: models based on MARS, ANN and LR methods," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1033-1049, December.
    10. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    11. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    12. Wu, Jinran & Cui, Zhesen & Chen, Yanyan & Kong, Demeng & Wang, You-Gan, 2019. "A new hybrid model to predict the electrical load in five states of Australia," Energy, Elsevier, vol. 166(C), pages 598-609.
    13. Filipe Rodrigues & Carlos Cardeira & João M. F. Calado & Rui Melicio, 2023. "Short-Term Load Forecasting of Electricity Demand for the Residential Sector Based on Modelling Techniques: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-26, May.
    14. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    15. Jiarong Shi & Zhiteng Wang, 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    16. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh, 2020. "An efficient hour-ahead electrical load forecasting method based on innovative features," Energy, Elsevier, vol. 201(C).
    18. Zhineng Hu & Jing Ma & Liangwei Yang & Xiaoping Li & Meng Pang, 2019. "Decomposition-Based Dynamic Adaptive Combination Forecasting for Monthly Electricity Demand," Sustainability, MDPI, vol. 11(5), pages 1-25, February.
    19. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5330-:d:1192300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.