IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006664.html
   My bibliography  Save this article

A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction

Author

Listed:
  • Li, Kang
  • Duan, Pengfei
  • Cao, Xiaodong
  • Cheng, Yuanda
  • Zhao, Bingxu
  • Xue, Qingwen
  • Feng, Mengdan

Abstract

Ensuring precise multi-energy load forecasting is crucial for the effective planning, management, and operation of Integrated Energy Systems (IES). This study proposes a novel multivariate load forecasting model based on time-series decomposition and reconstruction to handle the complex, high-dimensional multi-energy load data in IES and enhance forecasting accuracy. Initially, the model conducts a thorough correlation analysis and variable screening to minimize irrelevant data interference. It then applies denoising by decomposing the load sequence into modal components with distinct characteristics, using the complementary ensemble empirical mode decomposition (CEEMD). To overcome the unstable prediction accuracy inherent in time-domain decomposition methods, this study introduces an innovative composite evaluation factor (CEF) that reconstructs the modal components after considering their complexity, coupling, and frequency. The final predictions are generated using the proposed MTL-CNN-BiLSTM model, optimized with the attention mechanism. The results show that the proposed model significantly reduces error accumulation compared to traditional time-domain analysis methods, achieving a 37.40% reduction in average forecasting error and a 30.73% increase in forecasting efficiency.

Suggested Citation

  • Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006664
    DOI: 10.1016/j.apenergy.2024.123283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rikkas, Rebecka & Lahdelma, Risto, 2021. "Energy supply and storage optimization for mixed-type buildings," Energy, Elsevier, vol. 231(C).
    2. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    3. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    4. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    5. Wang, Shaomin & Wang, Shouxiang & Chen, Haiwen & Gu, Qiang, 2020. "Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics," Energy, Elsevier, vol. 195(C).
    6. Tang, Ling & Yu, Lean & He, Kaijian, 2014. "A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 128(C), pages 1-14.
    7. Lindberg, K.B. & Bakker, S.J. & Sartori, I., 2019. "Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts," Utilities Policy, Elsevier, vol. 58(C), pages 63-88.
    8. Lianhui Li & Hongguang Wang, 2018. "A VVWBO-BVO-based GM (1,1) and its parameter optimization by GRA-IGSA integration algorithm for annual power load forecasting," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    9. Sun, Qie & Fu, Yu & Lin, Haiyang & Wennersten, Ronald, 2022. "A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties," Applied Energy, Elsevier, vol. 314(C).
    10. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    11. Tianhe Sun & Tieyan Zhang & Yun Teng & Zhe Chen & Jiakun Fang, 2019. "Monthly Electricity Consumption Forecasting Method Based on X12 and STL Decomposition Model in an Integrated Energy System," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-16, October.
    12. Vaghefi, A. & Jafari, M.A. & Bisse, Emmanuel & Lu, Y. & Brouwer, J., 2014. "Modeling and forecasting of cooling and electricity load demand," Applied Energy, Elsevier, vol. 136(C), pages 186-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    2. Chen, Fan & Yu, Lan & Mao, Jinqi & Yang, Qing & Wang, Delu & Yu, Chenghao, 2024. "A novel data-characteristic-driven modeling approach for imputing missing value in industrial statistics: A case study of China electricity statistics," Applied Energy, Elsevier, vol. 373(C).
    3. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    4. Xu, Yan & Yu, Qi & Du, Pei & Wang, Jianzhou, 2024. "A paradigm shift in solar energy forecasting: A novel two-phase model for monthly residential consumption," Energy, Elsevier, vol. 305(C).
    5. Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
    6. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    7. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    8. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
    9. M. Zulfiqar & Kelum A. A. Gamage & M. B. Rasheed & C. Gould, 2024. "Optimised Deep Learning for Time-Critical Load Forecasting Using LSTM and Modified Particle Swarm Optimisation," Energies, MDPI, vol. 17(22), pages 1-27, November.
    10. Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
    11. Tan, Mao & Liao, Chengchen & Chen, Jie & Cao, Yijia & Wang, Rui & Su, Yongxin, 2023. "A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor," Applied Energy, Elsevier, vol. 343(C).
    12. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
    13. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
    14. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    15. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    18. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    19. Piotr Bórawski & Aneta Bełdycka-Bórawska & Bogdan Klepacki & Lisa Holden & Tomasz Rokicki & Andrzej Parzonko, 2024. "Changes in Gross Nuclear Electricity Production in the European Union," Energies, MDPI, vol. 17(14), pages 1-31, July.
    20. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.