IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224024885.html
   My bibliography  Save this article

Performance assessment of ammonia as a turbofan engine fuel during various altitude levels

Author

Listed:
  • Oğur, Emine
  • Koç, Ali
  • Köse, Özkan
  • Koç, Yıldız
  • Yağlı, Hüseyin

Abstract

This research is focused on analysing the thermodynamic performance outcomes of the ammonia-fueled turbofan engine. The assessment contains exergy sustainability, economic aspects, environmental impact, and energy and exergy analysis at take-off, climb-out, climb and cruise levels. The required mathematical modelling for thermodynamic analysis of the turbofan engine was performed with Engineering Equation Solver (EES) software. Then it was calculated how much improvement could be achieved in the amount of emissions that occur in the case of using ammonia and kerosene. It was determined that the combustion chamber (CC) has the greatest improvement potential of the turbofan. The maximum productivity lack rate (83.87 %) was determined in the CC at the cruise level, minimum productivity lack rate (0.72 %) was found to be the LPC at the same level. During the take-off level, the turbofan engine had the highest energetic and exergetic fuel costs, reaching 37138.38 $/h and 34195.78 $/h, respectively. The highest specific fuel consumption (85.602 kg/kN.h), thermal efficiency (53.78 %) and thrust efficiency (40.29 %) of the turbofan engine using ammonia as fuel carried out at the take-off level. Eventually, the maximum carbon dioxide emission reduction was calculated as 43.84 tonCO2/h when compared to kerosene fuel.

Suggested Citation

  • Oğur, Emine & Koç, Ali & Köse, Özkan & Koç, Yıldız & Yağlı, Hüseyin, 2024. "Performance assessment of ammonia as a turbofan engine fuel during various altitude levels," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024885
    DOI: 10.1016/j.energy.2024.132714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    2. Lv, Chengkun & Huang, Qian & Lan, Zhu & Chang, Juntao & Yu, Daren, 2023. "Parametric optimization and exergy analysis of a high mach number aeroengine with an ammonia mass injection pre-compressor cooling cycle," Energy, Elsevier, vol. 282(C).
    3. Sara A Salah & Ehsan F Abbas & Obed Majeed Ali & Naseer T Alwan & Salam J Yaqoob & Reza Alayi, 2022. "Evaluation of the gas turbine unit in the Kirkuk gas power plant to analyse the energy and exergy using ChemCad simulation [Review of gas turbine power plant modifications and the effectiveness of ," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 953-970.
    4. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    5. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    6. Ekici, Selcuk, 2020. "Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases," Energy, Elsevier, vol. 202(C).
    7. Coban, Kahraman & Colpan, C. Ozgur & Karakoc, T. Hikmet, 2017. "Application of thermodynamic laws on a military helicopter engine," Energy, Elsevier, vol. 140(P2), pages 1427-1436.
    8. Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
    9. Ekici, Selcuk, 2020. "Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing," Energy, Elsevier, vol. 193(C).
    10. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    11. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    12. Samad, Abdul & Saghir, Husnain & Ahmad, Iftikhar & Ahmad, Farooq & Caliskan, Hakan, 2023. "Thermodynamic analysis of cumene production plant for identification of energy recovery potentials," Energy, Elsevier, vol. 270(C).
    13. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    14. Wu, Di & Hu, Bin & Wang, R.Z., 2018. "Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants," Renewable Energy, Elsevier, vol. 116(PA), pages 775-785.
    15. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
    16. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    17. Muhammad Kashif Jamil & Maaz Akhtar & Muhammad Farooq & Muhammad Mujtaba Abbas & Saad & Muhammad Khuzaima & Khurshid Ahmad & Md Abul Kalam & Anas Abdelrahman, 2022. "Analysis of the Impact of Propanol-Gasoline Blends on Lubricant Oil Degradation and Spark-Ignition Engine Characteristics," Energies, MDPI, vol. 15(15), pages 1-11, August.
    18. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    2. Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
    3. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    4. Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
    5. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    6. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
    7. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    8. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    9. Wang, Busheng & Xuan, Yimin, 2024. "Heuristic deepening of aero engine performance analysis model based on thermodynamic principle of variable mass system," Energy, Elsevier, vol. 306(C).
    10. Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
    11. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    12. Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
    13. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    14. Ekici, Selcuk & Ayar, Murat & Kilic, Ugur & Karakoc, T. Hikmet, 2023. "Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application," Journal of Air Transport Management, Elsevier, vol. 108(C).
    15. Liang, Zhirong & Liu, Haoye & Han, Zhangliang & Fan, Yukun & Lei, Lei, 2024. "Combustion and particulate I/SVOC characteristics of an aero-engine combustor with dual-stage under operational power and injection pressure," Energy, Elsevier, vol. 302(C).
    16. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Stage-based exergy analysis for a modern turboprop engine under various loading," Energy, Elsevier, vol. 308(C).
    17. Aygun, Hakan & Erkara, Seref & Turan, Onder, 2022. "Comprehensive exergo- sustainability analysis for a next generation aero engine," Energy, Elsevier, vol. 239(PD).
    18. Warimani, Mahammadsalman & Azami, Muhammad Hanafi & Khan, Sher Afghan & Ismail, Ahmad Faris & Saharin, Sanisah & Ariffin, Ahmad Kamal, 2021. "Internal flow dynamics and performance of pulse detonation engine with alternative fuels," Energy, Elsevier, vol. 237(C).
    19. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
    20. Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.