IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002347.html
   My bibliography  Save this article

Thermodynamic analysis of cumene production plant for identification of energy recovery potentials

Author

Listed:
  • Samad, Abdul
  • Saghir, Husnain
  • Ahmad, Iftikhar
  • Ahmad, Farooq
  • Caliskan, Hakan

Abstract

In this work, exergy analysis of cumene production plant is carried out in an integrated environment of Aspen Plus and MATLAB. Physical exergy is calculated in Aspen Plus V.10, while an interface of MATLAB and Aspen Plus is used to calculate chemical exergy of the process. For systematic analysis and comparison, the cumene plant is divided into three sections: preheating section, reaction section and separation section. Then, exergy efficiency, irreversibilities and exergetic improvement potential are calculated. The overall plant exergy efficiency, irreversibility and improvement potential are found as 84.93%, 95960.52 kW and 15102.5 kW, respectively. The reaction section has the highest exergy efficiency of 87.44%, while the separation section has the lowest exergy efficiency of 58.95%. The analyses performed in this study can provide a basis for optimization of design and operation of the plants.

Suggested Citation

  • Samad, Abdul & Saghir, Husnain & Ahmad, Iftikhar & Ahmad, Farooq & Caliskan, Hakan, 2023. "Thermodynamic analysis of cumene production plant for identification of energy recovery potentials," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002347
    DOI: 10.1016/j.energy.2023.126840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bühler, Fabian & Nguyen, Tuong-Van & Elmegaard, Brian, 2016. "Energy and exergy analyses of the Danish industry sector," Applied Energy, Elsevier, vol. 184(C), pages 1447-1459.
    2. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    2. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    3. Ágnes Kádár Horváth, 2014. "Complex Evaluation Model of Corporate Energy Management," Theory Methodology Practice (TMP), Faculty of Economics, University of Miskolc, vol. 10(01), pages 33-44.
    4. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    5. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    6. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    7. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    8. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    9. Zühlsdorf, Benjamin & Jensen, Jonas Kjær & Cignitti, Stefano & Madsen, Claus & Elmegaard, Brian, 2018. "Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides," Energy, Elsevier, vol. 153(C), pages 650-660.
    10. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    11. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    12. Yongbo Li & Bathrinath Sankaranarayanan & D. Thresh Kumar & Ali Diabat, 2019. "Risks assessment in thermal power plants using ISM methodology," Annals of Operations Research, Springer, vol. 279(1), pages 89-113, August.
    13. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    14. Milena N. Rajić & Rado M. Maksimović & Pedja Milosavljević & Dragan Pavlović, 2019. "Energy Management System Application for Sustainable Development in Wood Industry Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    15. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Gonzalez Hernandez, Ana & Lupton, Richard C. & Williams, Chris & Cullen, Jonathan M., 2018. "Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants," Applied Energy, Elsevier, vol. 218(C), pages 232-245.
    17. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.
    18. Fabian Bühler & Stefan Petrović & Torben Ommen & Fridolin Müller Holm & Henrik Pieper & Brian Elmegaard, 2018. "Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS," Energies, MDPI, vol. 11(4), pages 1-24, March.
    19. Bühler, Fabian & Nguyen, Tuong-Van & Jensen, Jonas Kjær & Holm, Fridolin Müller & Elmegaard, Brian, 2018. "Energy, exergy and advanced exergy analysis of a milk processing factory," Energy, Elsevier, vol. 162(C), pages 576-592.
    20. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.