Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.126765
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
- Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
- Tona, Cesare & Raviolo, Paolo Antonio & Pellegrini, Luiz Felipe & de Oliveira Júnior, Silvio, 2010. "Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight," Energy, Elsevier, vol. 35(2), pages 952-959.
- Joost Vogtländer & David Peck & Dorota Kurowicka, 2019. "The Eco-Costs of Material Scarcity, a Resource Indicator for LCA, Derived from a Statistical Analysis on Excessive Price Peaks," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
- Turan, Onder, 2022. "Exergo-economic analysis of a CFM56-7B turbofan engine," Energy, Elsevier, vol. 259(C).
- Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
- Balli, Ozgur & Caliskan, Nesrin & Caliskan, Hakan, 2023. "Aviation, energy, exergy, sustainability, exergoenvironmental and thermoeconomic analyses of a turbojet engine fueled with jet fuel and biofuel used on a pilot trainer aircraft," Energy, Elsevier, vol. 263(PD).
- Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
- Balli, Ozgur & Karakoc, T. Hikmet, 2022. "Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)," Energy, Elsevier, vol. 256(C).
- Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Karali, Halil Ibrahim & Caliskan, Hakan, 2024. "Energy, exergy, sustainability, thermoeconomic, exergoeconomic, environmental and environmental-economic effects of novel boron-containing open cell geopolymer filter of a diesel engine on exhaust emi," Energy, Elsevier, vol. 290(C).
- Ershov, Mikhail A. & Savelenko, Vsevolod D. & Burov, Nikita O. & Makhova, Uliana A. & Mukhina, Daria Y. & Aleksanyan, David R. & Kapustin, Vladimir M. & Lobashova, Marina M. & Sereda, Alexander V. & A, 2023. "An incorporating innovation and new interactive technology into obtaining sustainable aviation fuels," Energy, Elsevier, vol. 280(C).
- Doğan, Battal & Çelik, Mehmet & Bayındırlı, Cihan & Erol, Derviş, 2023. "Exergy, exergoeconomic, and sustainability analyses of a diesel engine using biodiesel fuel blends containing nanoparticles," Energy, Elsevier, vol. 274(C).
- Zheng, Qiangang & Zhang, Hongwei & Hu, Chenxu & Zhang, Haibo, 2024. "Performance seeking control method for minimum pollutant emission mode for turbofan engine," Energy, Elsevier, vol. 289(C).
- Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).
- Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
- Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
- Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
- Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
- Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
- Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).
- Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
- Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
- Sogut, M. Ziya, 2020. "Assessment of small scale turbojet engine considering environmental and thermodynamics performance for flight processes," Energy, Elsevier, vol. 200(C).
- Balli, Ozgur & Caliskan, Nesrin & Caliskan, Hakan, 2023. "Aviation, energy, exergy, sustainability, exergoenvironmental and thermoeconomic analyses of a turbojet engine fueled with jet fuel and biofuel used on a pilot trainer aircraft," Energy, Elsevier, vol. 263(PD).
- Balli, Ozgur & Hepbasli, Arif, 2014. "Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine," Energy, Elsevier, vol. 64(C), pages 582-600.
- Nine Klaassen & Arno Scheepens & Bas Flipsen & Joost Vogtlander, 2020. "Eco-Efficient Value Creation of Residential Street Lighting Systems by Simultaneously Analysing the Value, the Costs and the Eco-Costs during the Design and Engineering Phase," Energies, MDPI, vol. 13(13), pages 1-18, June.
- Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
- Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
- Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
- Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
- Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
- Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
- Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
More about this item
Keywords
Efficiency; Environmental analysis; Exergy; Thermoeconomic analysis; Transportation; Turbofan engine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001597. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.