IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3823-d389710.html
   My bibliography  Save this article

Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels

Author

Listed:
  • Burak Yuksel

    (Department of Mechanical Engineering, Ege University, Bornova, Izmir 35100, Turkey)

  • Huseyin Gunerhan

    (Department of Mechanical Engineering, Ege University, Bornova, Izmir 35100, Turkey)

  • Arif Hepbasli

    (Department of Energy Engineering, Yasar University, Bornova, Izmir 35100, Turkey)

Abstract

This research put forth exergy-based economic and sustainability analyses of a (J85-GE-5H) military turbojet engine (TJE). Firstly, sustainability, conventional exergoeconomic and advanced exergoeconomic cost analyses were executed utilizing kerosene fuel according to real engine working circumstances. The engine was likewise investigated parametrically, considering H 2 fuel utilization. The sustainable economic analysis assessment of the TJE was finally actualized by comparing the acquired outcomes for both fuels. The entire engine’s unit exergy cost of product ( c Pr ) with kerosene was determined 76.45 $/GJ for the military (MIL) process mode (PM), whereas it was computed 94.97 $/GJ for the afterburner (AB) PM. Given the use of H 2 , the c Pr increased to 179 and 288 $/GJ for the aforementioned two modes, seriatim. While the sustainability cost index (SCI) values were obtained 52.86 and 78.84 $/GJ for the MIL and AB PM, seriatim, they became 128 and 244 $/GJ when considering H 2 . Consequently, the higher exergy demolitions occurring in the afterburner exhaust duct (ABED) and combustion chamber (CC) sections led to higher exergy destruction costs in the TJE. However, the engine worked less cost efficient with H 2 fuel rather than JP-8 fuel because of the higher cost value of fuel.

Suggested Citation

  • Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3823-:d:389710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    3. Guillermo Valencia Ochoa & Jhan Piero Rojas & Jorge Duarte Forero, 2020. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine," Energies, MDPI, vol. 13(1), pages 1-18, January.
    4. Evanthia A. Nanaki & Christopher J. Koroneos, 2017. "Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    5. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    6. Andreas W. Schäfer & Antony D. Evans & Tom G. Reynolds & Lynnette Dray, 2016. "Costs of mitigating CO2 emissions from passenger aircraft," Nature Climate Change, Nature, vol. 6(4), pages 412-417, April.
    7. Anastassios Stamatis & Christina Vinni & Diamantis Bakalis & Fotini Tzorbatzoglou & Panagiotis Tsiakaras, 2012. "Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol," Energies, MDPI, vol. 5(11), pages 1-20, October.
    8. Atılgan, Ramazan & Turan, Önder & Altuntaş, Önder & Aydın, Hakan & Synylo, Kateryna, 2013. "Environmental impact assessment of a turboprop engine with the aid of exergy," Energy, Elsevier, vol. 58(C), pages 664-671.
    9. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    10. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    11. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    12. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    13. Coban, Kahraman & Colpan, C. Ozgur & Karakoc, T. Hikmet, 2017. "Application of thermodynamic laws on a military helicopter engine," Energy, Elsevier, vol. 140(P2), pages 1427-1436.
    14. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
    15. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    16. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    17. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    18. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
    2. Kagan Ayaz, S. & Caliskan, Hakan & Altuntas, Onder, 2023. "Environmental and second law analysis of a turbojet engine operating with different fuels," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
    2. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    3. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    4. Caglayan, Hasan & Caliskan, Hakan, 2021. "Advanced exergy analyses and optimization of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    6. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    7. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    8. Laihe Zhuang & Guoqiang Xu & Bensi Dong & Qihang Liu & Mengchen Li & Jie Wen, 2022. "Exergetic Effects of Cooled Cooling Air Technology on the Turbofan Engine during a Typical Mission," Energies, MDPI, vol. 15(14), pages 1-25, July.
    9. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    10. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    11. Onur Vahip Güler & Emine Yağız Gürbüz & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Advanced Exergoeconomic Assessment of CO 2 Emissions, Geo-Fluid and Electricity in Dual Loop Geothermal Power Plant," Energies, MDPI, vol. 16(8), pages 1-24, April.
    12. Mossi Idrissa, A.K. & Goni Boulama, K., 2019. "Advanced exergy analysis of a combined Brayton/Brayton power cycle," Energy, Elsevier, vol. 166(C), pages 724-737.
    13. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    14. Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
    15. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    16. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    17. Lazzaretto, Andrea & Masi, Massimo & Rech, Sergio & Carraro, Gianluca & Danieli, Piero & Volpato, Gabriele & Dal Cin, Enrico, 2024. "From exergoeconomics to Thermo-X Optimization in the transition to sustainable energy systems," Energy, Elsevier, vol. 304(C).
    18. Wang, Yinglong & Chen, Zhengrun & Shen, Yuanyuan & Ma, Zhaoyuan & Li, Huiyuan & Liu, Xiaobin & Zhu, Zhaoyou & Qi, Jianguang & Cui, Peizhe & Wang, Lei & Ma, Yixin & Xu, Dongmei, 2021. "Advanced exergy and exergoeconomic analysis of an integrated system combining CO2 capture-storage and waste heat utilization processes," Energy, Elsevier, vol. 219(C).
    19. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    20. Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3823-:d:389710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.