IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1205-d329052.html
   My bibliography  Save this article

Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method

Author

Listed:
  • Burak Yuksel

    (Department of Mechanical Engineering, Ege University, Bornova, Izmir 35100, Turkey)

  • Ozgur Balli

    (First Air Maintenance Factory Directorate, Ministry of Defence, Eskisehir 26320, Turkey)

  • Huseyin Gunerhan

    (Department of Mechanical Engineering, Ege University, Bornova, Izmir 35100, Turkey)

  • Arif Hepbasli

    (Department of Energy Engineering, Yasar University, Bornova, Izmir 35100, Turkey)

Abstract

This study dealt with evaluating the (J85-GE-5H) military turbojet engine (TJE) in terms of exergetic and advanced exergetic analyses at Military (MIL) and Afterburner (AB) process modes by utilizing kerosene (JP-8) and hydrogen (H 2 ) fuels. First, exergy and advanced exergy analyses of the engine were performed using JP-8 fuel as per actual engine operating conditions. These analyses of the turbojet engine using hydrogen fuel were also examined parametrically. The performance evaluation of the engine was lastly executed by comparing the obtained results for both fuels. Based on the parametric studies undertaken, the entire engine’s exergetic efficiency with JP-8 was reckoned 30.85% at the MIL process mode while it was calculated as 16.98% at the AB process mode. With the usage of H 2 , the efficiencies of the engine decreased to 28.62% and 15.33% for the above mentioned two modes, respectively. As the supreme exergy destructions occurred in the combustion chamber (CC) and afterburner exhaust duct (ABED) segments, the new technological developments should be considered to design more efficient engines. As a result, the engine worked less efficiently with hydrogen fuel due to the enhancement in exergy destructions. Conversely, the greenhouse gas (GHG) emission parameters lessened with the utilization of H 2 fuel.

Suggested Citation

  • Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1205-:d:329052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    2. Atılgan, Ramazan & Turan, Önder & Altuntaş, Önder & Aydın, Hakan & Synylo, Kateryna, 2013. "Environmental impact assessment of a turboprop engine with the aid of exergy," Energy, Elsevier, vol. 58(C), pages 664-671.
    3. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    4. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    5. Coban, Kahraman & Colpan, C. Ozgur & Karakoc, T. Hikmet, 2017. "Application of thermodynamic laws on a military helicopter engine," Energy, Elsevier, vol. 140(P2), pages 1427-1436.
    6. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    7. Evanthia A. Nanaki & Christopher J. Koroneos, 2017. "Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    8. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    9. Hossein Safaei & Michael J. Aziz, 2017. "Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled," Energies, MDPI, vol. 10(7), pages 1-31, July.
    10. Anastassios Stamatis & Christina Vinni & Diamantis Bakalis & Fotini Tzorbatzoglou & Panagiotis Tsiakaras, 2012. "Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol," Energies, MDPI, vol. 5(11), pages 1-20, October.
    11. Balli, Ozgur & Hepbasli, Arif, 2014. "Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine," Energy, Elsevier, vol. 64(C), pages 582-600.
    12. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    13. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    14. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    15. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
    2. Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
    3. Kagan Ayaz, S. & Caliskan, Hakan & Altuntas, Onder, 2023. "Environmental and second law analysis of a turbojet engine operating with different fuels," Energy, Elsevier, vol. 285(C).
    4. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
    2. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    3. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    4. Caglayan, Hasan & Caliskan, Hakan, 2021. "Advanced exergy analyses and optimization of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
    6. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    7. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    8. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    9. Laihe Zhuang & Guoqiang Xu & Bensi Dong & Qihang Liu & Mengchen Li & Jie Wen, 2022. "Exergetic Effects of Cooled Cooling Air Technology on the Turbofan Engine during a Typical Mission," Energies, MDPI, vol. 15(14), pages 1-25, July.
    10. Mossi Idrissa, A.K. & Goni Boulama, K., 2019. "Advanced exergy analysis of a combined Brayton/Brayton power cycle," Energy, Elsevier, vol. 166(C), pages 724-737.
    11. Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
    12. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    13. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    14. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    15. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    16. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    17. Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
    18. Balli, Ozgur & Aygun, Hakan & Turan, Onder, 2022. "Enhanced dynamic exergy analysis of a micro-jet (μ-jet) engine at various modes," Energy, Elsevier, vol. 239(PA).
    19. Aygun, Hakan & Cilgin, Mehmet Emin & Turan, Onder, 2021. "Exergo-sustainability indicators of a target drone engine at dynamic loads," Energy, Elsevier, vol. 221(C).
    20. Turan, Onder, 2022. "Exergo-economic analysis of a CFM56-7B turbofan engine," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1205-:d:329052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.