IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026288.html
   My bibliography  Save this article

Stage-based exergy analysis for a modern turboprop engine under various loading

Author

Listed:
  • Kirmizi, Mehmet
  • Aygun, Hakan
  • Turan, Onder

Abstract

Enhancements in propulsion systems have played a key role in promoting aircraft fuel efficiency, which serves to achieve global decarbonization goals. In particular, investigation by decoupling individual components of the whole engine explicitly provides insight about improvement potential. In this study, stage-based exergetic assessments of the turbomachinery components such as compressor and turbine for a large turboprop engine used in military cargo aircraft are performed for five different flight cases. As a novelty, a new index called specific irreversibility ratio (SIR) showing irreversibility per unit power is established. In this regard, exergy efficiency of compressor changes from 86.6 % to 96.3 % throughout the 14 stages whereas for whole compressor, it is measured as 89.3 %. On the other hand, exergy efficiency of gas turbine changes from 92.5 % to 91.8 % throughout 2 stages whereas, for power turbine, it varies from 89.1 % to 89.7 % throughout 2 stages. Moreover, SIR of air compressor diminishes from 12.94 % to 4.26 % throughout 14 stages whereas those of gas turbine and power turbine increase from 8.17 % to 8.84 % and from 11.52 % to 12.58 % along with two stages, respectively. As for effect of flight cases, exergy efficiency of whole compressor changes by 2 % whereas those of gas and power turbines vary by 0.2 % and 0.5 %, respectively throughout flight cases. However, improvement potential rate of air compressor experiences a change between 23.81 kW and 58.19 kW whereas it varies between 27.31 kW and 50.74 kW for gas turbine and between 26.24 kW and 36.23 kW for power turbine. It could be inferred that variation of exergetic metrics throughout stages is more apparent in comparison with those of flight cases. The methodology improved in this study could help in understanding stage-based efficiency of turbomachinery components at on-design and off-design conditions.

Suggested Citation

  • Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Stage-based exergy analysis for a modern turboprop engine under various loading," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026288
    DOI: 10.1016/j.energy.2024.132854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    2. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    3. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    4. Ranasinghe, Kavindu & Guan, Kai & Gardi, Alessandro & Sabatini, Roberto, 2019. "Review of advanced low-emission technologies for sustainable aviation," Energy, Elsevier, vol. 188(C).
    5. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
    6. Şöhret, Yasin & Dinç, Ali & Karakoç, T. Hikmet, 2015. "Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission," Energy, Elsevier, vol. 93(P1), pages 716-729.
    7. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Performance and energy analysis of turboprop engine for air freighter aircraft with the aid of multiple regression," Energy, Elsevier, vol. 283(C).
    8. Aygun, Hakan, 2024. "Effects of air to fuel ratio on parameters of combustor used for gas turbine engines: Applications of turbojet, turbofan, turboprop and turboshaft," Energy, Elsevier, vol. 305(C).
    9. Zaporozhets, Oleksandr & Isaienko, Volodymyr & Synylo, Kateryna, 2020. "Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
    2. Aygun, Hakan & Kirmizi, Mehmet & Kilic, Ulas & Turan, Onder, 2023. "Multi-objective optimization of a small turbojet engine energetic performance," Energy, Elsevier, vol. 271(C).
    3. Aygun, Hakan & Turan, Onder, 2023. "Analysis of cruise conditions on energy, exergy and NOx emission parameters of a turbofan engine for middle-range aircraft," Energy, Elsevier, vol. 267(C).
    4. Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
    5. Aygun, Hakan & Erkara, Seref & Turan, Onder, 2022. "Comprehensive exergo- sustainability analysis for a next generation aero engine," Energy, Elsevier, vol. 239(PD).
    6. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    7. Ekici, Selcuk, 2020. "Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing," Energy, Elsevier, vol. 193(C).
    8. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    9. Turan, Onder, 2022. "Exergo-economic analysis of a CFM56-7B turbofan engine," Energy, Elsevier, vol. 259(C).
    10. Ekici, Selcuk, 2020. "Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases," Energy, Elsevier, vol. 202(C).
    11. Syamimi Saadon & Nur Athirah Mohd Nasir, 2020. "Performance and Sustainability Analysis of an Organic Rankine Cycle System in Subcritical and Supercritical Conditions for Waste Heat Recovery," Energies, MDPI, vol. 13(12), pages 1-24, June.
    12. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    13. Oğur, Emine & Koç, Ali & Köse, Özkan & Koç, Yıldız & Yağlı, Hüseyin, 2024. "Performance assessment of ammonia as a turbofan engine fuel during various altitude levels," Energy, Elsevier, vol. 308(C).
    14. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    15. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    16. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    17. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    18. Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
    19. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    20. Yurdusevimli Metin, Ece & Aygün, Hakan, 2019. "Energy and power aspects of an experimental target drone engine at non-linear controller loads," Energy, Elsevier, vol. 185(C), pages 981-993.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.