Prediction of heavy-oil combustion emissions with a semi-supervised learning model considering variable operation conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129782
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Tang, Zhenhao & Wang, Shikui & Chai, Xiangying & Cao, Shengxian & Ouyang, Tinghui & Li, Yang, 2022. "Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction," Energy, Elsevier, vol. 256(C).
- Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
- Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
- Chen, Junghui & Chan, Lester Lik Teck & Cheng, Yi-Cheng, 2013. "Gaussian process regression based optimal design of combustion systems using flame images," Applied Energy, Elsevier, vol. 111(C), pages 153-160.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
- Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
- Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
- Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
- Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
- Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
- Wu, Zheng & Zhang, Yue & Dong, Ze, 2023. "Prediction of NOx emission concentration from coal-fired power plant based on joint knowledge and data driven," Energy, Elsevier, vol. 271(C).
- Ögren, Yngve & Tóth, Pál & Garami, Attila & Sepman, Alexey & Wiinikka, Henrik, 2018. "Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors," Applied Energy, Elsevier, vol. 226(C), pages 450-460.
- Wang, Zhimin & Huang, Qian & Liu, Guanqing & Wang, Kexuan & Lyu, Junfu & Li, Shuiqing, 2024. "Knowledge-inspired data-driven prediction of overheating risks in flexible thermal-power plants," Applied Energy, Elsevier, vol. 364(C).
- Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
- Feng, Xiangdong & Liu, Shanjian & Yue, Kang & Wei, Heng & Bi, Dongmei & Zhao, Wenjing, 2023. "Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures," Energy, Elsevier, vol. 285(C).
- Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
- Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
- Liukkonen, M. & Hiltunen, T., 2014. "Adaptive monitoring of emissions in energy boilers using self-organizing maps: An application to a biomass-fired CFB (circulating fluidized bed)," Energy, Elsevier, vol. 73(C), pages 443-452.
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Zhenhao Tang & Xiaoyan Wu & Shengxian Cao, 2019. "Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints," Energies, MDPI, vol. 12(9), pages 1-16, May.
More about this item
Keywords
Emissions prediction; Flame image; Adversarial denoising autoencoder; Gaussian process regression; Semi-supervised model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031766. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.