IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018802.html
   My bibliography  Save this article

A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance

Author

Listed:
  • Wu, Yixi
  • Wang, Ziqi
  • Shi, Chenli
  • Jin, Xiaohang
  • Xu, Zhengguo

Abstract

Coal-fired boilers considering deep peak shaving operate under wide and variable load requirements with complex and varying working conditions, making the prediction and optimization of combustion target variables challenging. This study proposed a data-driven approach for the prediction model building, tuning and combustion optimization. In this approach, a neural network for prediction based on Gaussian kernel and long short-term memory (LSTM), which captured and fused the working condition and temporal information, was first proposed. To address incomplete historical data coverage of working conditions, a fine-tuning framework with the idea of transfer and few-shot tuning was then introduced. Finally, an improved fitness function considering both optimization objectives and combustion adjustment limitations was designed to mitigate the risks associated with large-scale adjustments of operable variables. By conducting experiments on a 1000 MW boiler, targeting NOx concentration and the outlet temperature of the air pre-heater, the proposed method demonstrated high prediction accuracy with R2 values of 0.979 and 0.989, and significantly reduced mean squared error (MSE) by 98.05% and 97.37% on new conditions compared to untuned models. It achieved the reductions in NOx and temperature of 24.70 mgm−3 and 2.013 ∘C, and decreased the average changes of operable variables by 9.66% and 11.24% compared to using only rigid constraints.

Suggested Citation

  • Wu, Yixi & Wang, Ziqi & Shi, Chenli & Jin, Xiaohang & Xu, Zhengguo, 2024. "A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018802
    DOI: 10.1016/j.energy.2024.132106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Zhongbao & Li, Xiaolu & Xu, Lijun & Cheng, Yanting, 2013. "Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 683-692.
    2. Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
    3. Tang, Zhenhao & Wang, Shikui & Chai, Xiangying & Cao, Shengxian & Ouyang, Tinghui & Li, Yang, 2022. "Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction," Energy, Elsevier, vol. 256(C).
    4. Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).
    5. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
    6. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
    7. Xu, Wentao & Huang, Yaji & Song, Siheng & Chen, Yuzhu & Cao, Gehan & Yu, Mengzhu & Chen, Bo & Zhang, Rongchu & Liu, Yuqing & Zou, Yiran, 2023. "A new online optimization method for boiler combustion system based on the data-driven technique and the case-based reasoning principle," Energy, Elsevier, vol. 263(PE).
    8. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    9. Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
    10. Geng, Zhiqiang & Zhang, Yanhui & Li, Chengfei & Han, Yongming & Cui, Yunfei & Yu, Bin, 2020. "Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature," Energy, Elsevier, vol. 194(C).
    11. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
    2. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    3. Han, Zhezhe & Tang, Xiaoyu & Xie, Yue & Liang, Ruiyu & Bao, Yongqiang, 2024. "Prediction of heavy-oil combustion emissions with a semi-supervised learning model considering variable operation conditions," Energy, Elsevier, vol. 288(C).
    4. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
    5. Wang, Zhi & Zhou, Huaichun & Peng, Xianyong & Cao, Shengxian & Tang, Zhenhao & Li, Kuangyu & Fan, Siyuan & Xue, Wenyuan & Yao, Guojia & Xu, Shiming, 2024. "A predictive model with time-varying delays employing channel equalization convolutional neural network for NOx emissions in flexible power generation," Energy, Elsevier, vol. 306(C).
    6. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    7. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    8. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    9. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    10. Li, Zhenghui & Yao, Shunchun & Chen, Da & Li, Longqian & Lu, Zhimin & Liu, Wen & Yu, Zhuliang, 2024. "Multi-parameter co-optimization for NOx emissions control from waste incinerators based on data-driven model and improved particle swarm optimization," Energy, Elsevier, vol. 306(C).
    11. Xu, Wentao & Huang, Yaji & Song, Siheng & Yue, Junfeng & Chen, Bo & Liu, Yuqing & Zou, Yiran, 2023. "A new on-line combustion optimization approach for ultra-supercritical coal-fired boiler to improve boiler efficiency, reduce NOx emission and enhance operating safety," Energy, Elsevier, vol. 282(C).
    12. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    13. Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
    14. Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
    15. Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
    16. Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
    17. Lei Han & Lingmei Wang & Hairui Yang & Chengzhen Jia & Enlong Meng & Yushan Liu & Shaoping Yin, 2023. "Optimization of Circulating Fluidized Bed Boiler Combustion Key Control Parameters Based on Machine Learning," Energies, MDPI, vol. 16(15), pages 1-23, July.
    18. Mollo, Malebo & Kolesnikov, Andrei & Makgato, Seshibe, 2022. "Simultaneous reduction of NOx emission and SOx emission aided by improved efficiency of a Once-Through Benson Type Coal Boiler," Energy, Elsevier, vol. 248(C).
    19. Ding, Xiaosong & Feng, Chong & Yu, Peiling & Li, Kaiwen & Chen, Xi, 2023. "Gradient boosting decision tree in the prediction of NOx emission of waste incineration," Energy, Elsevier, vol. 264(C).
    20. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.