IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v319y2022ics0306261922005906.html
   My bibliography  Save this article

Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application

Author

Listed:
  • Eslick, John C.
  • Zamarripa, Miguel A.
  • Ma, Jinliang
  • Wang, Maojian
  • Bhattacharya, Indrajit
  • Rychener, Brian
  • Pinkston, Philip
  • Bhattacharyya, Debangsu
  • Zitney, Stephen E.
  • Burgard, Anthony P.
  • Miller, David C.

Abstract

As renewable power generation deployment increases, fossil fuel plants are increasingly required to operate more flexibly. Many coal-fired power plants were originally designed to operate at base load and do not operate optimally at partial load. Predictive first-principles plant-wide models can be employed to identify opportunities for flexibility improvements and diagnose low-load operating issues. This paper describes the application of the Institute for the Design of Advanced Energy Systems Integrated Platform (IDAES) to model and optimize flexible power plant operations. The key benefits of using IDAES are that it provides an open-source, fully equation-oriented modeling framework for efficient modular model construction, reuse, and customization, together with a mathematical optimization framework leveraging powerful, state-of-the-art solvers. The process systems engineering workflow from predictive process simulation to parameter estimation, model validation, and plant optimization is applicable to a variety of existing and next-generation energy systems as well as other chemical and environmental processes. To demonstrate this capability, a physics-based, steady-state model was developed to improve full- and part-load performance of the Escalante Generating Station, a 245 MWe (net) subcritical pulverized coal-fired power plant owned and operated by Tri-State Generation and Transmission Association. Specifically, sixty-nine model parameters were simultaneously estimated from several months of operating data enabling prediction of flow rates, temperatures, pressures, and steam quality throughout the plant. The validated model was leveraged by Escalante to reduce the minimum operating load from 90 MW to 50 MW by diagnosing a low-load water-hammer issue, enabling coal usage and emissions reductions during periods of low power demand. Additionally, opportunities for heat rate reduction (i.e., efficiency improvement) through a steeper sliding-pressure approach to load-following and optimization of other boiler operating variables were also identified and quantified. For example, a potential efficiency improvement of 0.7 percentage points was observed at half-load operation.

Suggested Citation

  • Eslick, John C. & Zamarripa, Miguel A. & Ma, Jinliang & Wang, Maojian & Bhattacharya, Indrajit & Rychener, Brian & Pinkston, Philip & Bhattacharyya, Debangsu & Zitney, Stephen E. & Burgard, Anthony P., 2022. "Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application," Applied Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922005906
    DOI: 10.1016/j.apenergy.2022.119226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Data reconciliation and gross error detection for operational data in power plants," Energy, Elsevier, vol. 75(C), pages 14-23.
    2. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Ahmad Hassan Kamal & Muhammad Haider Khan & Awais Ahmad Khan & Hassan Afroze Ahmad & Fahad Ahmed & Noman Hafeez & Rana Muhammad Zawar Sami & Syed Muhammad , 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation," Energies, MDPI, vol. 13(21), pages 1-22, October.
    3. Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
    4. Suresh, M.V.J.J. & Reddy, K.S. & Kolar, Ajit Kumar, 2011. "ANN-GA based optimization of a high ash coal-fired supercritical power plant," Applied Energy, Elsevier, vol. 88(12), pages 4867-4873.
    5. Szega, Marcin & Nowak, Grzegorz Tadeusz, 2015. "An optimization of redundant measurements location for thermal capacity of power unit steam boiler calculations using data reconciliation method," Energy, Elsevier, vol. 92(P1), pages 135-141.
    6. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
    7. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    8. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    9. Szega, Marcin, 2020. "Methodology of advanced data validation and reconciliation application in industrial thermal processes," Energy, Elsevier, vol. 198(C).
    10. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Gross error isolability for operational data in power plants," Energy, Elsevier, vol. 74(C), pages 918-927.
    11. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Inequality constrained nonlinear data reconciliation of a steam turbine power plant for enhanced parameter estimation," Energy, Elsevier, vol. 103(C), pages 215-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengxiang Jin & Fengqi Si & Yunshan Dong & Shaojun Ren, 2023. "A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning," Energies, MDPI, vol. 16(18), pages 1-12, September.
    2. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    3. Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
    2. Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
    3. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
    5. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
    6. Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
    7. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Muhammad Farooq & Fahid Riaz & Hassan Afroze Ahmad & Ahmad Hassan Kamal & Saqib Anwar & Ahmed M. El-Sherbeeny & Muhammad Haider Khan & Noman Hafeez & Arman, 2021. "Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics," Energies, MDPI, vol. 14(5), pages 1-18, February.
    8. Plis, Marcin & Rusinowski, Henryk, 2019. "Identification of mathematical models of thermal processes with reconciled measurement results," Energy, Elsevier, vol. 177(C), pages 192-202.
    9. Wang, Lijin & Fan, Weipeng & Jiang, Guoqian & Xie, Ping, 2023. "An efficient federated transfer learning framework for collaborative monitoring of wind turbines in IoE-enabled wind farms," Energy, Elsevier, vol. 284(C).
    10. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    11. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    12. Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
    13. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
    14. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    15. Šomplák, Radovan & Nevrlý, Vlastimír & Smejkalová, Veronika & Šmídová, Zlata & Pavlas, Martin, 2019. "Bulky waste for energy recovery: Analysis of spatial distribution," Energy, Elsevier, vol. 181(C), pages 827-839.
    16. Szega, Marcin, 2017. "An improvement of measurements reliability in thermal processes by application of the advanced data reconciliation method with the use of fuzzy uncertainties of measurements," Energy, Elsevier, vol. 141(C), pages 2490-2498.
    17. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    18. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    19. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    20. Baghsheikhi, Mostafa & Sayyaadi, Hoseyn, 2016. "Real-time exergoeconomic optimization of a steam power plant using a soft computing-fuzzy inference system," Energy, Elsevier, vol. 114(C), pages 868-884.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922005906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.