Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119226
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Data reconciliation and gross error detection for operational data in power plants," Energy, Elsevier, vol. 75(C), pages 14-23.
- Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Ahmad Hassan Kamal & Muhammad Haider Khan & Awais Ahmad Khan & Hassan Afroze Ahmad & Fahad Ahmed & Noman Hafeez & Rana Muhammad Zawar Sami & Syed Muhammad , 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation," Energies, MDPI, vol. 13(21), pages 1-22, October.
- Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
- Suresh, M.V.J.J. & Reddy, K.S. & Kolar, Ajit Kumar, 2011. "ANN-GA based optimization of a high ash coal-fired supercritical power plant," Applied Energy, Elsevier, vol. 88(12), pages 4867-4873.
- Szega, Marcin & Nowak, Grzegorz Tadeusz, 2015. "An optimization of redundant measurements location for thermal capacity of power unit steam boiler calculations using data reconciliation method," Energy, Elsevier, vol. 92(P1), pages 135-141.
- Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
- Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
- Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
- Szega, Marcin, 2020. "Methodology of advanced data validation and reconciliation application in industrial thermal processes," Energy, Elsevier, vol. 198(C).
- Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Gross error isolability for operational data in power plants," Energy, Elsevier, vol. 74(C), pages 918-927.
- Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Inequality constrained nonlinear data reconciliation of a steam turbine power plant for enhanced parameter estimation," Energy, Elsevier, vol. 103(C), pages 215-230.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shengxiang Jin & Fengqi Si & Yunshan Dong & Shaojun Ren, 2023. "A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning," Energies, MDPI, vol. 16(18), pages 1-12, September.
- Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
- Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
- Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
- Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
- Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
- Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
- Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Muhammad Farooq & Fahid Riaz & Hassan Afroze Ahmad & Ahmad Hassan Kamal & Saqib Anwar & Ahmed M. El-Sherbeeny & Muhammad Haider Khan & Noman Hafeez & Arman, 2021. "Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics," Energies, MDPI, vol. 14(5), pages 1-18, February.
- Plis, Marcin & Rusinowski, Henryk, 2019. "Identification of mathematical models of thermal processes with reconciled measurement results," Energy, Elsevier, vol. 177(C), pages 192-202.
- Wang, Lijin & Fan, Weipeng & Jiang, Guoqian & Xie, Ping, 2023. "An efficient federated transfer learning framework for collaborative monitoring of wind turbines in IoE-enabled wind farms," Energy, Elsevier, vol. 284(C).
- Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
- Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
- Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
- Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
- Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
- Šomplák, Radovan & Nevrlý, Vlastimír & Smejkalová, Veronika & Šmídová, Zlata & Pavlas, Martin, 2019. "Bulky waste for energy recovery: Analysis of spatial distribution," Energy, Elsevier, vol. 181(C), pages 827-839.
- Szega, Marcin, 2017. "An improvement of measurements reliability in thermal processes by application of the advanced data reconciliation method with the use of fuzzy uncertainties of measurements," Energy, Elsevier, vol. 141(C), pages 2490-2498.
- Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
- Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
- Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
- Baghsheikhi, Mostafa & Sayyaadi, Hoseyn, 2016. "Real-time exergoeconomic optimization of a steam power plant using a soft computing-fuzzy inference system," Energy, Elsevier, vol. 114(C), pages 868-884.
More about this item
Keywords
Modeling; Optimization; Parameter estimation; Validation; Process improvement;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922005906. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.