IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224022485.html
   My bibliography  Save this article

Investigating the significance of structural transition in chlorodifluoromethane (R22) + N2 hydrates for hydrate-based greenhouse gas separation

Author

Listed:
  • Lim, Junkyu
  • Mok, Junghoon
  • Seo, Yongwon

Abstract

Chlorodifluoromethane (CHClF2 or R22) is known for its high global warming potential and ozone-depleting characteristics. Due to its significant environmental impact, R22 is scheduled for a complete ban by 2030 under the Montreal Protocol. To prevent the release of R22 into the atmosphere, it is imperative to efficiently separate and recover R22 from gas mixtures. Thus, the aim of this study was to explore the influence of gas hydrate structure on the efficiency of hydrate-based gas separation (HBGS) in separating R22 from R22 + N2 mixtures. This was achieved by examining a pressure-composition diagram and the in situ Raman spectra and powder X-ray diffraction (PXRD) patterns of R22 + N2 hydrates with various R22 compositions. In situ Raman spectroscopic and PXRD pattern analyses revealed that as R22 composition decreased, the R22 + N2 hydrates underwent a structural transition from structure I (sI) to a coexistence of structures I and II, ultimately adopting structure II (sII). The pressure-composition analysis suggested that the cusp point observed in the hydrate composition curve was caused by the structural transition of the R22 + N2 hydrates. It was noted that the structural transition from sI to sII led to a significant decrease in separation efficiency. The experimental results demonstrated that the gas hydrate structure plays a crucial role in determining the gas separation efficiency of HBGS and designing the HBGS process.

Suggested Citation

  • Lim, Junkyu & Mok, Junghoon & Seo, Yongwon, 2024. "Investigating the significance of structural transition in chlorodifluoromethane (R22) + N2 hydrates for hydrate-based greenhouse gas separation," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022485
    DOI: 10.1016/j.energy.2024.132474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bolaji, B.O. & Huan, Z., 2013. "Ozone depletion and global warming: Case for the use of natural refrigerant – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 49-54.
    2. Tajima, Hideo & Yamasaki, Akihiro & Kiyono, Fumio, 2004. "Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation," Energy, Elsevier, vol. 29(11), pages 1713-1729.
    3. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    4. Yang, Mingjun & Zhou, Hang & Wang, Pengfei & Song, Yongchen, 2018. "Effects of additives on continuous hydrate-based flue gas separation," Applied Energy, Elsevier, vol. 221(C), pages 374-385.
    5. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    6. Aprea, Ciro & Maiorino, Angelo, 2011. "An experimental investigation of the global environmental impact of the R22 retrofit with R422D," Energy, Elsevier, vol. 36(2), pages 1161-1170.
    7. Lee, Yohan & Lee, Dongyoung & Lee, Jong-Won & Seo, Yongwon, 2016. "Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration," Applied Energy, Elsevier, vol. 163(C), pages 51-59.
    8. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    9. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    10. Cheng, Chuanxiao & Wang, Fan & Tian, Yongjia & Wu, Xuehong & Zheng, Jili & Zhang, Jun & Li, Longwei & Yang, Penglin & Zhao, Jiafei, 2020. "Review and prospects of hydrate cold storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    12. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sa, Jeong-Hoon & Sum, Amadeu K., 2019. "Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    4. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    5. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    6. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    7. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    8. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    10. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    11. Remi-Erempagamo Tariyemienyo Meindinyo & Thor Martin Svartaas, 2016. "Gas Hydrate Growth Kinetics: A Parametric Study," Energies, MDPI, vol. 9(12), pages 1-29, December.
    12. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    13. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    14. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    15. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    16. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    17. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    18. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    19. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    20. Fengyi, Mi & Zhongjin, He & Guosheng, Jiang & Fulong, Ning, 2023. "Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores," Energy, Elsevier, vol. 276(C).

    More about this item

    Keywords

    Gas hydrates; Greenhouse gas; R22; Gas separation; Structural transition;
    All these keywords.

    JEL classification:

    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.