IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic23.html
   My bibliography  Save this article

Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications

Author

Listed:
  • Sa, Jeong-Hoon
  • Sum, Amadeu K.

Abstract

Gas hydrates are crystalline icy compounds capturing small gas molecules in the cavities made of hydrogen-bonded water molecules. Hydrates can store a large amount of gas and selectively capture certain gas species depending on thermodynamic conditions and formation pathways. In addition, any impurities that are not stabilized in hydrates are excluded upon hydrate formation. Such interesting properties have allowed the proposal of a variety of hydrate-based applications, including energy storage, CO2 capture, gas separation, and desalination. However, they are not yet utilized as viable technologies, mainly because of the low process efficiency. The major challenges here are to improve the formation kinetics and to enable hydrates to be properly managed in industrial processes. Here, inspired by the similarities in crystallization processes of ice and gas hydrates, we identified the capabilities of two ice-nucleating additives, Icemax® (protein) and Drift® (surfactant), as kinetic promoters for hydrate-based applications. Our experimental results demonstrate that both additives increase the formation kinetics of CH4 (structure I) and CH4/C2H6 (structure II) hydrates under high and low shear. Drift® enlarges the interfacial area at the gas-liquid interface, enhancing the mass transfer, and thus increases the hydrate conversion 18 times under non-stirred cases. Icemax® can better accelerate the initiation of hydrate formation by providing additional nuclei for heterogeneous nucleation. According to visual observations, both additives form porous and soft hydrates, which can be easily handled in industrial scale processes. Major findings confirm the potential of ice-nucleating additives to facilitate hydrate-based applications by improving the production rate and process efficiency.

Suggested Citation

  • Sa, Jeong-Hoon & Sum, Amadeu K., 2019. "Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:23
    DOI: 10.1016/j.apenergy.2019.113352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tajima, Hideo & Yamasaki, Akihiro & Kiyono, Fumio, 2004. "Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation," Energy, Elsevier, vol. 29(11), pages 1713-1729.
    2. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    3. Takeya, Satoshi & Mimachi, Hiroko & Murayama, Tetsuro, 2018. "Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions," Applied Energy, Elsevier, vol. 230(C), pages 86-93.
    4. Renault-Crispo, Jean-Sébastien & Coulombe, Sylvain & Servio, Phillip, 2017. "Kinetics of carbon dioxide gas hydrates with tetrabutylammonium bromide and functionalized multi-walled carbon nanotubes," Energy, Elsevier, vol. 128(C), pages 414-420.
    5. Tomita, Shuhei & Akatsu, Satoru & Ohmura, Ryo, 2015. "Experiments and thermodynamic simulations for continuous separation of CO2 from CH4+CO2 gas mixture utilizing hydrate formation," Applied Energy, Elsevier, vol. 146(C), pages 104-110.
    6. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    7. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    8. Sa, Jeong-Hoon & Kwak, Gye-Hoon & Lee, Bo Ram & Han, Kunwoo & Cho, Seong Jun & Lee, Ju Dong & Lee, Kun-Hong, 2017. "Phase equilibria and characterization of CO2 and SF6 binary hydrates for CO2 sequestration," Energy, Elsevier, vol. 126(C), pages 306-311.
    9. Yang, Mingjun & Zheng, Jianan & Liu, Weiguo & Liu, Yu & Song, Yongchen, 2015. "Effects of C3H8 on hydrate formation and dissociation for integrated CO2 capture and desalination technology," Energy, Elsevier, vol. 93(P2), pages 1971-1979.
    10. He, Tianbiao & Nair, Sajitha K. & Babu, Ponnivalavan & Linga, Praveen & Karimi, Iftekhar A., 2018. "A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy," Applied Energy, Elsevier, vol. 222(C), pages 13-24.
    11. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    12. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2017. "An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application," Applied Energy, Elsevier, vol. 188(C), pages 190-199.
    13. Xia, Zhi-Ming & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Yan, Ke-Feng & Xu, Chun-Gang & Lv, Qiu-Nan & Cai, Jing, 2016. "Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent," Applied Energy, Elsevier, vol. 162(C), pages 1153-1159.
    14. Hashimoto, Hidenori & Yamaguchi, Tsutomu & Kinoshita, Takahiro & Muromachi, Sanehiro, 2017. "Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions," Energy, Elsevier, vol. 129(C), pages 292-298.
    15. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    16. Kumar, Asheesh & Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2019. "Direct use of seawater for rapid methane storage via clathrate (sII) hydrates," Applied Energy, Elsevier, vol. 235(C), pages 21-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huan Chen & Yanfeng Cao & Jifei Yu & Xiaopeng Zhai & Jianlin Peng & Wei Cheng & Tongchuan Hao & Xiaotong Zhang & Weitao Zhu, 2024. "Quantitative Characterization Method of Additional Resistance Based on Suspended Particle Migration and Deposition Model," Energies, MDPI, vol. 17(24), pages 1-19, December.
    2. Dong, Hongsheng & Wang, Jiaqi & Xie, Zhuoxue & Wang, Bin & Zhang, Lunxiang & Shi, Quan, 2021. "Potential applications based on the formation and dissociation of gas hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Yang, Lei & Guan, Dawei & Qu, Aoxing & Li, Qingping & Ge, Yang & Liang, Huiyong & Dong, Hongsheng & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2023. "Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice," Applied Energy, Elsevier, vol. 331(C).
    4. Chen, Chen & Yuan, Haoyu & Bi, Rongshan & Wang, Na & Li, Yujiao & He, Yan & Wang, Fei, 2022. "A novel conceptual design of LNG-sourced natural gas peak-shaving with gas hydrates as the medium," Energy, Elsevier, vol. 253(C).
    5. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    4. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    5. Paul, Lagnajita & Lee, Ju Dong & Linga, Praveen & Kumar, Rajnish, 2024. "Exploring thermodynamic viable conditions for separation of highly energy intensive H2O and D2O mixtures through gas hydrate based process," Applied Energy, Elsevier, vol. 368(C).
    6. Wang, Yiwei & Du, Mei & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Chen, Bo & Chen, Guangjin & Sun, Changyu & Yang, Lanying, 2017. "Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation," Energy, Elsevier, vol. 129(C), pages 28-41.
    7. Bhattacharjee, Gaurav & Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2020. "Seawater based mixed methane-THF hydrate formation at ambient temperature conditions," Applied Energy, Elsevier, vol. 271(C).
    8. Lim, Junkyu & Mok, Junghoon & Seo, Yongwon, 2024. "Investigating the significance of structural transition in chlorodifluoromethane (R22) + N2 hydrates for hydrate-based greenhouse gas separation," Energy, Elsevier, vol. 306(C).
    9. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    10. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    11. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    12. Xiao, Peng & Dong, Bao-Can & Li, Jia & Zhang, Hong-Liang & Chen, Guang-Jin & Sun, Chang-Yu & Huang, Xing, 2022. "An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production," Energy, Elsevier, vol. 259(C).
    13. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    14. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    15. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    16. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    17. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    18. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. He, Tianbiao & Xing, Xialian & Xu, Hao & Mao, Ning & Qi, Meng & Zhang, Jibao & Yin, Zhenyuan, 2024. "Towards energy-efficient hydrate-based desalination: A comprehensive study on binary hydrate formers with propane as a promoter," Applied Energy, Elsevier, vol. 375(C).
    20. Fengyi, Mi & Zhongjin, He & Guosheng, Jiang & Fulong, Ning, 2023. "Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.