IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224021145.html
   My bibliography  Save this article

Hero or Devil: A comparison of different carbon tax policies for China

Author

Listed:
  • Xu, Qi
  • Liu, Kui

Abstract

A carbon tax is a promising environmental regulation. Given its heavy industrial base and substantial reliance on coal, China is under immense pressure to transition to greener energy systems. This paper enriches Annicchiarico and Di Dio’s (2015) dynamic general equilibrium model for environmental policy analysis by integrating a Schumpeterian innovation-driven clean energy transition that endogenizes the carbon intensity of energy inputs. We analyze the environmental, energy, economic, and social impacts of various hypothetical carbon taxes – including an energy excise tax on households, an emission tax on general producers, and an energy tax on energy suppliers – across different tax rates and subsidy strategies for both short-term and long-term effects. We show that: (i) by internalizing carbon intensity, a carbon tax can achieve a “quadruple dividend”, encompassing emission reduction, energy transition, economic growth, and welfare enhancement; (ii) the optimal carbon tax strategy, integrating both an emission tax and an energy tax, directs revenue towards supporting the clean energy transition; (iii) under a single environmental regime, a composite carbon tax exceeding 250 CNY/ton is optimal, while under multiple regimes, 25 CNY/ton suffices to reduce carbon emissions per unit of output by over 90%; (iv) despite their benefits, all carbon taxes compel firms to reorganize production, inevitably risking unemployment.

Suggested Citation

  • Xu, Qi & Liu, Kui, 2024. "Hero or Devil: A comparison of different carbon tax policies for China," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021145
    DOI: 10.1016/j.energy.2024.132340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    2. van der Ploeg, Frederick & Rezai, Armon & Tovar Reanos, Miguel, 2022. "Gathering support for green tax reform: Evidence from German household surveys," European Economic Review, Elsevier, vol. 141(C).
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Ouyang, Tiancheng & Li, Yinxuan & Xie, Shutao & Wang, Chengchao & Mo, Chunlan, 2024. "Low-carbon economic dispatch strategy for integrated power system based on the substitution effect of carbon tax and carbon trading," Energy, Elsevier, vol. 294(C).
    5. Reyer Gerlagh & Matti Liski, 2018. "Carbon Prices for the Next Hundred Years," Economic Journal, Royal Economic Society, vol. 128(609), pages 728-757, March.
    6. Matsumoto, Shigeru, 2023. "The effects of carbon taxes on the welfare of households using multiple energy sources," Energy Economics, Elsevier, vol. 126(C).
    7. Silvi, Mariateresa & Padilla Rosa, Emilio, 2023. "A tragedy of the horizons? An intertemporal perspective on public support for carbon taxes," Energy Economics, Elsevier, vol. 125(C).
    8. Mattauch, Linus & Zhao, Jiaxin, 2021. "When standards have better distributional consequences than carbon taxes," INET Oxford Working Papers 2020-25, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    9. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    10. Semet, Raphaël, 2024. "Coordinating social equity and emissions: Challenges in carbon tax policy," Energy Policy, Elsevier, vol. 185(C).
    11. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    12. Reyer Gerlagh & Matti Liski, 2018. "Carbon Prices for The Next Hundred Years," Economic Journal, Royal Economic Society, vol. 128(609), pages 728-757.
    13. William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
    14. Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
    15. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    16. Zhao, Jiaxin & Mattauch, Linus, 2022. "When standards have better distributional consequences than carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    17. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    18. Olijslagers, Stan & van der Ploeg, Frederick & van Wijnbergen, Sweder, 2023. "On current and future carbon prices in a risky world," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    19. Ghaith, Ahmad F. & Epplin, Francis M., 2017. "Consequences of a carbon tax on household electricity use and cost, carbon emissions, and economics of household solar and wind," Energy Economics, Elsevier, vol. 67(C), pages 159-168.
    20. Sun, Chuanwang & Zhan, Yanhong & Gao, Xiang, 2023. "Does environmental regulation increase domestic value-added in exports? An empirical study of cleaner production standards in China," World Development, Elsevier, vol. 163(C).
    21. Garth Heutel, 2012. "How Should Environmental Policy Respond to Business Cycles? Optimal Policy under Persistent Productivity Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 244-264, April.
    22. Distefano, Tiziano & D’Alessandro, Simone, 2023. "Introduction of the carbon tax in Italy: Is there room for a quadruple-dividend effect?," Energy Economics, Elsevier, vol. 120(C).
    23. Gilbert E. Metcalf & James H. Stock, 2023. "The Macroeconomic Impact of Europe's Carbon Taxes," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(3), pages 265-286, July.
    24. Govinda R. Timilsina & Yazid Dissou & Michael Toman & Dirk Heine, 2024. "How can a carbon tax benefit developing economies with informality? A CGE analysis for Côte d’Ivoire," Climate Policy, Taylor & Francis Journals, vol. 24(1), pages 71-86, January.
    25. Li, Xuelian & Lu, Tinghui & Lin, Jyh-Horng & Lai, Yingkuan, 2023. "Assessing insurer green finance in response to manufacturing carbon emissions trading in a dragon-king environment: A capped barrier cap option approach," Energy Economics, Elsevier, vol. 128(C).
    26. Goulder, Lawrence H. & Hafstead, Marc A.C. & Kim, GyuRim & Long, Xianling, 2019. "Impacts of a carbon tax across US household income groups: What are the equity-efficiency trade-offs?," Journal of Public Economics, Elsevier, vol. 175(C), pages 44-64.
    27. Gilbert E Metcalf, 2023. "Five myths about carbon pricing," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 39(4), pages 680-693.
    28. Sun, Chuanwang & Xu, Zhehong & Zheng, Hongwei, 2023. "Green transformation of the building industry and the government policy effects: Policy simulation based on the DSGE model," Energy, Elsevier, vol. 268(C).
    29. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    30. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    31. Li, Ke & Lin, Boqiang, 2016. "Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model," Energy Policy, Elsevier, vol. 89(C), pages 214-223.
    32. Bourgeois, Cyril & Giraudet, Louis-Gaëtan & Quirion, Philippe, 2021. "Lump-sum vs. energy-efficiency subsidy recycling of carbon tax revenue in the residential sector: A French assessment," Ecological Economics, Elsevier, vol. 184(C).
    33. Hinterlang, Natascha & Martin, Anika & Röhe, Oke & Stähler, Nikolai & Strobel, Johannes, 2022. "Using energy and emissions taxation to finance labor tax reductions in a multi-sector economy," Energy Economics, Elsevier, vol. 115(C).
    34. Donald B. Marron & Eric J. Toder, 2014. "Tax Policy Issues in Designing a Carbon Tax," American Economic Review, American Economic Association, vol. 104(5), pages 563-568, May.
    35. Tovar Reaños, Miguel A. & Lynch, Muireann Á., 2022. "Measuring carbon tax incidence using a fully flexible demand system. Vertical and horizontal effects using Irish data," Energy Policy, Elsevier, vol. 160(C).
    36. Plank, Josef & Doblinger, Claudia, 2018. "The firm-level innovation impact of public R&D funding: Evidence from the German renewable energy sector," Energy Policy, Elsevier, vol. 113(C), pages 430-438.
    37. Jia, Zhijie, 2023. "The hidden benefit: Emission trading scheme and business performance of downstream enterprises," Energy Economics, Elsevier, vol. 117(C).
    38. Berry, Audrey, 2019. "The distributional effects of a carbon tax and its impact on fuel poverty: A microsimulation study in the French context," Energy Policy, Elsevier, vol. 124(C), pages 81-94.
    39. Sommer, Stephan & Mattauch, Linus & Pahle, Michael, 2022. "Supporting carbon taxes: The role of fairness," Ecological Economics, Elsevier, vol. 195(C).
    40. Olivier Blanchard & Christian Gollier & Jean Tirole, 2023. "The Portfolio of Economic Policies Needed to Fight Climate Change," Annual Review of Economics, Annual Reviews, vol. 15(1), pages 689-722, September.
    41. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    42. Yunfa Zhu & Madanmohan Ghosh & Deming Luo & Nick Macaluso & Jacob Rattray, 2018. "Revenue Recycling And Cost Effective Ghg Abatement: An Exploratory Analysis Using A Global Multi-Sector Multi-Region Cge Model," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, February.
    43. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    44. Wu, Huihuang & Yang, Haozhe & Hu, Xiurong & Zheng, Leyi & Li, Jie & Li, Yangfan & Wang, Xian & Ge, Wendong & Zhou, Yuhan & Liu, Ying & Liu, Junfeng & Wang, Yuqing & Ma, Jianmin & Tao, Shu, 2024. "Complementing carbon tax with renewable energy investment to decarbonize the energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    45. Mardones, Cristian & Alvial, Esteban, 2024. "Evaluation of a carbon tax in Costa Rica linking a demand system focused on energy goods and an input-output model," Applied Energy, Elsevier, vol. 363(C).
    46. Stephie Fried, 2018. "Climate Policy and Innovation: A Quantitative Macroeconomic Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 90-118, January.
    47. Pan, Xian & Yu, Lihong, 2024. "Do China's pilot emissions trading schemes lead to domestic carbon leakage? Perspective from the firm relocation," Energy Economics, Elsevier, vol. 132(C).
    48. Martin, Ralf & de Preux, Laure B. & Wagner, Ulrich J., 2014. "The impact of a carbon tax on manufacturing: Evidence from microdata," Journal of Public Economics, Elsevier, vol. 117(C), pages 1-14.
    49. Annicchiarico, Barbara & Di Dio, Fabio, 2015. "Environmental policy and macroeconomic dynamics in a new Keynesian model," Journal of Environmental Economics and Management, Elsevier, vol. 69(C), pages 1-21.
    50. Chen, Qian & Zha, Donglan & Salman, Muhammad, 2022. "The influence of carbon tax on CO2 rebound effect and welfare in Chinese households," Energy Policy, Elsevier, vol. 168(C).
    51. Stefano Carattini & Garth Heutel & Givi Melkadze, 2023. "Climate Policy, Financial Frictions, and Transition Risk," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 778-794, December.
    52. Stefano Carattini & Garth Heutel & Givi Melkadze, 2023. "Climate Policy, Financial Frictions, and Transition Risk," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 778-794, December.
    53. Wang, Longze & Zhang, Yan & Li, Zhehan & Huang, Qiyu & Xiao, Yuxin & Yi, Xinxing & Ma, Yiyi & Li, Meicheng, 2023. "P2P trading mode for real-time coupled electricity and carbon markets based on a new indicator green energy," Energy, Elsevier, vol. 285(C).
    54. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    55. Hafedh Bouakez & Omar Rachedi & Emiliano Santoro, 2023. "The Government Spending Multiplier in a Multisector Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(1), pages 209-239, January.
    56. Galinato, Gregmar I. & Yoder, Jonathan K., 2010. "An integrated tax-subsidy policy for carbon emission reduction," Resource and Energy Economics, Elsevier, vol. 32(3), pages 310-326, August.
    57. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    58. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    59. Jia, Zhijie & Lin, Boqiang & Liu, Xiying, 2023. "Rethinking the equity and efficiency of carbon tax: A novel perspective," Applied Energy, Elsevier, vol. 346(C).
    60. Teodora Diana Corsatea & Soeren Lindner & Inaki Arto & Maria Victoria Roman & Jose Manuel Rueda-Cantuche & Agustin Velezquez Afonso & Antonio F. Amores & Frederik Neuwahl, 2019. "World Input-Output Database Environmental Accounts," JRC Research Reports JRC116234, Joint Research Centre.
    61. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
    62. Cao, Jing & Dai, Hancheng & Li, Shantong & Guo, Chaoyi & Ho, Mun & Cai, Wenjia & He, Jianwu & Huang, Hai & Li, Jifeng & Liu, Yu & Qian, Haoqi & Wang, Can & Wu, Libo & Zhang, Xiliang, 2021. "The general equilibrium impacts of carbon tax policy in China: A multi-model comparison," Energy Economics, Elsevier, vol. 99(C).
    63. Timilsina, Govinda R. & Csordas, Stefan & Mevel, Simon, 2011. "Under what conditions does a carbon tax on fossil fuels stimulate biofuels ?," Policy Research Working Paper Series 5678, The World Bank.
    64. Lin Boqiang, 2022. "China’s High-Quality Economic Growth in the Process of Carbon Neutrality," China Finance and Economic Review, De Gruyter, vol. 11(4), pages 3-22, December.
    65. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    66. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    67. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    68. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    69. Liu, Na & Yao, Xilong & Wan, Fang & Han, Yunfei, 2023. "Are tax revenue recycling schemes based on industry-differentiated carbon tax conducive to realizing the “double dividend”?," Energy Economics, Elsevier, vol. 124(C).
    70. Jia, Zhijie & Wu, Rongxin & Liu, Yu & Wen, Shiyan & Lin, Boqiang, 2024. "Can carbon tariffs based on domestic embedded carbon emissions reduce more carbon leakages?," Ecological Economics, Elsevier, vol. 220(C).
    71. Timilsina, Govinda R. & Csordás, Stefan & Mevel, Simon, 2011. "When does a carbon tax on fossil fuels stimulate biofuels?," Ecological Economics, Elsevier, vol. 70(12), pages 2400-2415.
    72. de Bruin, Kelly & Yakut, Aykut Mert, 2024. "Efficiency–equity trade-off in the Irish carbon tax: A CGE investigation of mixed revenue recycling schemes," Economic Modelling, Elsevier, vol. 134(C).
    73. Meng, Xin & Yu, Yanni, 2023. "Can renewable energy portfolio standards and carbon tax policies promote carbon emission reduction in China's power industry?," Energy Policy, Elsevier, vol. 174(C).
    74. Julius J. Andersson, 2019. "Carbon Taxes and CO2 Emissions: Sweden as a Case Study," American Economic Journal: Economic Policy, American Economic Association, vol. 11(4), pages 1-30, November.
    75. Zhang, Xiaoliang & Zheng, Xiaojia, 2024. "Does carbon emission trading policy induce financialization of non-financial firms? Evidence from China," Energy Economics, Elsevier, vol. 131(C).
    76. Yan, Shiyu & Lv, Chengwei & Yao, Liming, 2024. "Social welfare and equality equilibrium based carbon tax subsidy incentive approach for biomass-coal co-firing towards carbon emissions," Energy, Elsevier, vol. 291(C).
    77. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    78. Wiskich, Anthony, 2024. "A carbon tax versus clean subsidies: Optimal and suboptimal policies for the clean transition," Energy Economics, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2023. "Environmental Subsidies to Mitigate Net-Zero Transition Costs," Working papers 910, Banque de France.
    2. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2023. "Carbon pricing, border adjustment and climate clubs: Options for international cooperation," Journal of International Economics, Elsevier, vol. 144(C).
    3. Eric Jondeau & Gregory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition Risk," Swiss Finance Institute Research Paper Series 22-45, Swiss Finance Institute.
    4. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    5. Federico Lubello, 2024. "From Brown to Green: Climate Transition and Macroprudential Policy Coordination," JRFM, MDPI, vol. 17(10), pages 1-20, October.
    6. Ferrari Minesso, Massimo & Pagliari, Maria Sole, 2023. "No country is an island. International cooperation and climate change," Journal of International Economics, Elsevier, vol. 145(C).
    7. Mireille Chiroleu-Assouline, 2022. "Rendre acceptable la nécessaire taxation du carbone. Quelles pistes pour la France ?," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 15-53.
    8. Hinterlang, Natascha & Martin, Anika & Röhe, Oke & Stähler, Nikolai & Strobel, Johannes, 2022. "Using energy and emissions taxation to finance labor tax reductions in a multi-sector economy," Energy Economics, Elsevier, vol. 115(C).
    9. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean Innovation, Heterogeneous Financing Costs, and the Optimal Climate Policy Mix," CAMA Working Papers 2023-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University, revised May 2024.
    10. Xiao Yu & Yingdong Xu & Meng Sun & Yanzhe Zhang, 2021. "The Green-Innovation-Inducing Effect of a Unit Progressive Carbon Tax," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    11. Xiao Yu & Yingdong Xu & Jian Zhang & Yue Sun, 2022. "The Synergy Green Innovation Effect of Green Innovation Subsidies and Carbon Taxes," Sustainability, MDPI, vol. 14(6), pages 1-27, March.
    12. Kettner, Claudia & Leoni, Thomas & Köberl, Judith & Kortschak, Dominik & Kirchner, Mathias & Sommer, Mark & Wallenko, Laura & Bachner, Gabriel & Mayer, Jakob & Spittler, Nathalie & Kulmer, Veronika, 2024. "Modelling the economy-wide effects of unilateral CO2 pricing under different revenue recycling schemes in Austria – Searching for a triple dividend," Energy Economics, Elsevier, vol. 137(C).
    13. Martinsson, Gustav & Sajtos, László & Strömberg, Per & Thomann, Christian, 2022. "Carbon Pricing and Firm-Level CO2 Abatement: Evidence from a Quarter of a Century-Long Panel," Misum Working Paper Series 2022-10, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    14. Huang, Bihong & Punzi, Maria Teresa & Wu, Yu, 2022. "Environmental regulation and financial stability: Evidence from Chinese manufacturing firms," Journal of Banking & Finance, Elsevier, vol. 136(C).
    15. Batten, Sandra & Millard, Stephen, 2024. "Energy and climate policy in a DSGE model of the United Kingdom," Bank of England working papers 1064, Bank of England.
    16. Francesco Busato & Bruno Chiarini & Gianluigi Cisco & Maria Ferrara, 2023. "Green preferences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3211-3253, April.
    17. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    18. Garcia-Villegas, Salomon & Martorell, Enric, 2024. "Climate transition risk and the role of bank capital requirements," Economic Modelling, Elsevier, vol. 135(C).
    19. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2021. "Dynamic interactive effect and co-design of SO2 emission tax and CO2 emission trading scheme," Energy Policy, Elsevier, vol. 152(C).
    20. Annicchiarico, Barbara & Di Dio, Fabio & Diluiso, Francesca, 2024. "Climate actions, market beliefs, and monetary policy," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 176-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.