IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v126y2023ics014098832300422x.html
   My bibliography  Save this article

The effects of carbon taxes on the welfare of households using multiple energy sources

Author

Listed:
  • Matsumoto, Shigeru

Abstract

Households use a variety of energy services by combining several sources of energy, such as electricity, gas, and kerosene. However, the effects of carbon taxes on the welfare of households using multiple energy sources have not yet been fully investigated. In this study, we propose a residential energy consumption model where the elasticity of substitution between energy sources is influenced by weather conditions and the relative evaluation of energy sources differs between households with different socioeconomic characteristics. We then conduct a household-level data analysis to estimate the elasticity of substitution, and the relative evaluation of electricity, city gas, LP gas, and kerosene. The empirical results show that the elasticity of substitution between energy sources increases as outside temperature drops, and households with different socioeconomic characteristics evaluate energy sources differently. Specifically, using the estimation results, we assess the impact of carbon taxation on household welfare. Assuming that total energy expenditure remains unchanged after carbon taxation, we compare the welfare impact of carbon taxation among households using different energy source combinations. The simulation results predict that households using electricity and kerosene in rural areas are most severely affected by carbon taxation.

Suggested Citation

  • Matsumoto, Shigeru, 2023. "The effects of carbon taxes on the welfare of households using multiple energy sources," Energy Economics, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s014098832300422x
    DOI: 10.1016/j.eneco.2023.106924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832300422X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    2. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    3. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    4. repec:bla:scandj:v:103:y:2001:i:1:p:165-84 is not listed on IDEAS
    5. Gilbert E. Metcalf & Kevin A. Hassett, 1999. "Measuring The Energy Savings From Home Improvement Investments: Evidence From Monthly Billing Data," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 516-528, August.
    6. Frontuto, Vito, 2019. "Forecasting household consumption of fuels: A multiple discrete-continuous approach," Applied Energy, Elsevier, vol. 240(C), pages 205-214.
    7. Baker, Paul & Blundell, Richard, 1991. "The Microeconometric Approach to Modelling Energy Demand: Some Results for UK Households," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 7(2), pages 54-76, Summer.
    8. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    9. Baker, Paul & Blundell, Richard & Micklewright, John, 1989. "Modelling Household Energy Expenditures Using Micro-data," Economic Journal, Royal Economic Society, vol. 99(397), pages 720-738, September.
    10. Bernard, Jean-Thomas & Bolduc, Denis & Yameogo, Nadège-Désirée, 2011. "A pseudo-panel data model of household electricity demand," Resource and Energy Economics, Elsevier, vol. 33(1), pages 315-325, January.
    11. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    12. Runa Nesbakken, 2001. "Energy Consumption for Space Heating: A Discrete–Continuous Approach," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(1), pages 165-184, March.
    13. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    14. Bardazzi, Rossella & Pazienza, Maria Grazia, 2017. "Switch off the light, please! Energy use, aging population and consumption habits," Energy Economics, Elsevier, vol. 65(C), pages 161-171.
    15. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    16. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-17, April.
    17. Nesbakken, Runa, 1999. "Price sensitivity of residential energy consumption in Norway," Energy Economics, Elsevier, vol. 21(6), pages 493-515, December.
    18. Romero-Jordán, Desiderio & del Río, Pablo & Peñasco, Cristina, 2016. "An analysis of the welfare and distributive implications of factors influencing household electricity consumption," Energy Policy, Elsevier, vol. 88(C), pages 361-370.
    19. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    2. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    3. Hanemann, Michael & Labandeira, Xavier & Labeaga, José M. & Vásquez-Lavín, Felipe, 2024. "Discrete-continuous models of residential energy demand: A comprehensive review," Resource and Energy Economics, Elsevier, vol. 77(C).
    4. Mark Miller & Anna Alberini, 2015. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," CER-ETH Economics working paper series 15/223, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    5. Kostakis, Ioannis & Lolos, Sarantis & Sardianou, Eleni, 2021. "Residential natural gas demand: Assessing the evidence from Greece using pseudo-panels, 2012–2019," Energy Economics, Elsevier, vol. 99(C).
    6. Çetinkaya, Murat & Başaran, Alparslan A. & Bağdadioğlu, Necmiddin, 2015. "Electricity reform, tariff and household elasticity in Turkey," Utilities Policy, Elsevier, vol. 37(C), pages 79-85.
    7. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    8. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    9. Romero-Jordán, Desiderio & del Río, Pablo & Peñasco, Cristina, 2016. "An analysis of the welfare and distributive implications of factors influencing household electricity consumption," Energy Policy, Elsevier, vol. 88(C), pages 361-370.
    10. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    11. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
    12. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan, 2019. "Heterogeneity in the price response of residential electricity demand: A dynamic approach for Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 119-134.
    13. Cao, Jing & Ho, Mun Sing & Li, Yating & Newell, Richard G. & Pizer, William A., 2019. "Chinese residential electricity consumption: Estimation and forecast using micro-data," Resource and Energy Economics, Elsevier, vol. 56(C), pages 6-27.
    14. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    15. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    16. Helena Meier, Tooraj Jamasb, and Luis Orea, 2013. "Necessity or Luxury Good? Household Energy Spending and Income in Britain 1991-2007," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. Nina Boogen & Souvik Datta & Massimo Filippini, 2014. "Going beyond tradition: Estimating residential electricity demand using an appliance index and energy services," CER-ETH Economics working paper series 14/200, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    18. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    19. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
    20. Bakaloglou, Salomé & Charlier, Dorothée, 2021. "The role of individual preferences in explaining the energy performance gap," Energy Economics, Elsevier, vol. 104(C).

    More about this item

    Keywords

    Elasticity of substitution; Energy sources; Household-level data; Household welfare;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s014098832300422x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.