IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007321.html
   My bibliography  Save this article

Low-carbon economic dispatch strategy for integrated power system based on the substitution effect of carbon tax and carbon trading

Author

Listed:
  • Ouyang, Tiancheng
  • Li, Yinxuan
  • Xie, Shutao
  • Wang, Chengchao
  • Mo, Chunlan

Abstract

As the introduction of carbon peak and carbon neutrality, the intensity of carbon regulation is growing. The power system, as the main body of carbon emission, will face the constraints of compound carbon reduction policy. To address this issue, a low-carbon economic dispatch strategy for integrated power system based on the substitution effect of carbon tax and carbon trading is proposed to improve the economic and environmental joint benefits. Firstly, facing the volatility characteristics of carbon trading price, Monte Carlo method is implemented to analyze the uncertainty of carbon trading price. Next, the renewable energy power and electricity load are forecast by long short-term memory method. Subsequently, the gray wolves algorithm is imposed to optimize the dispatch model and obtain the optimal dispatch plan. The comparative analysis reveals that the carbon emission and dynamic payback period of the optimized integrated power system are 4.37 × 106 t and 10.06 years, which are reduced 1.67 × 105 t and 0.3 years compared with the conventional power system. Besides, the economic analysis demonstrates that the substitution effect can decrease the unit cost of carbon emission by 1.03 USD/t. Finally, the comparative analysis manifests that the proposed dispatch model can effectively boost the economic and environmental joint benefits for the integrated power system.

Suggested Citation

  • Ouyang, Tiancheng & Li, Yinxuan & Xie, Shutao & Wang, Chengchao & Mo, Chunlan, 2024. "Low-carbon economic dispatch strategy for integrated power system based on the substitution effect of carbon tax and carbon trading," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007321
    DOI: 10.1016/j.energy.2024.130960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    2. Li, Yiman & Peng, Tian & Zhang, Chu & Sun, Wei & Hua, Lei & Ji, Chunlei & Muhammad Shahzad, Nazir, 2022. "Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory," Renewable Energy, Elsevier, vol. 196(C), pages 1115-1126.
    3. Wang, Yihan & Wen, Zongguo & Lv, Xiaojun & Zhu, Junming, 2023. "The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target," Applied Energy, Elsevier, vol. 337(C).
    4. Qian, Tong & Tang, Wenhu & Wu, Qinghua, 2020. "A fully decentralized dual consensus method for carbon trading power dispatch with wind power," Energy, Elsevier, vol. 203(C).
    5. Qin, Peijia & Tan, Xianlin & Huang, Youbin & Pan, Mingming & Ouyang, Tiancheng, 2023. "Two-stage robust optimal scheduling framework applied for microgrids: Combined energy recovery and forecast," Renewable Energy, Elsevier, vol. 214(C), pages 290-306.
    6. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    7. Khosravi, Soheil & Hossainpour, Siamak & Farajollahi, Hossein & Abolzadeh, Nemat, 2022. "Integration of a coal fired power plant with calcium looping CO2 capture and concentrated solar power generation: Energy, exergy and economic analysis," Energy, Elsevier, vol. 240(C).
    8. Thomas Conefrey & John D. Fitz Gerald & Laura Malaguzzi Valeri & Richard S.J. Tol, 2013. "The impact of a carbon tax on economic growth and carbon dioxide emissions in Ireland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(7), pages 934-952, September.
    9. Dong, Huijuan & Dai, Hancheng & Geng, Yong & Fujita, Tsuyoshi & Liu, Zhe & Xie, Yang & Wu, Rui & Fujii, Minoru & Masui, Toshihiko & Tang, Liang, 2017. "Exploring impact of carbon tax on China’s CO2 reductions and provincial disparities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 596-603.
    10. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    11. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    2. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    3. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    4. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    5. de Bruin, Kelly & Yakut, Aykut Mert, 2024. "Efficiency–equity trade-off in the Irish carbon tax: A CGE investigation of mixed revenue recycling schemes," Economic Modelling, Elsevier, vol. 134(C).
    6. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    7. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    8. Wang, B. & Liu, L. & Huang, G.H. & Li, W. & Xie, Y.L., 2018. "Effects of carbon and environmental tax on power mix planning - A case study of Hebei Province, China," Energy, Elsevier, vol. 143(C), pages 645-657.
    9. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    10. Nanthakumar, Loganathan & Shahbaz, Muhammad & Taha, Roshaiza, 2014. "The Effect of Green Taxation and Economic Growth on Environment Hazards: The Case of Malaysia," MPRA Paper 56843, University Library of Munich, Germany, revised 23 Jun 2014.
    11. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    12. repec:ipg:wpaper:2014-494 is not listed on IDEAS
    13. Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
    14. Du, Dajun & Zhu, Minggao & Wu, Dakui & Li, Xue & Fei, Minrui & Hu, Yukun & Li, Kang, 2024. "Distributed security state estimation-based carbon emissions and economic cost analysis for cyber–physical power systems under hybrid attacks," Applied Energy, Elsevier, vol. 353(PA).
    15. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    16. Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
    17. Genovaitė Liobikienė & Mindaugas Butkus & Kristina Matuzevičiūtė, 2019. "The Contribution of Energy Taxes to Climate Change Policy in the European Union (EU)," Resources, MDPI, vol. 8(2), pages 1-23, April.
    18. Di Cosmo, Valeria & Hyland, Marie, 2013. "Carbon tax scenarios and their effects on the Irish energy sector," Energy Policy, Elsevier, vol. 59(C), pages 404-414.
    19. Yang, Ke & Liu, Guangyu & Ji, Hong & Xing, Zhixiang & Jiang, Juncheng & Yin, Yixuan, 2024. "The effects of different equivalence ratios and initial pressures on the explosion of methane/air premixed gas in closed space," Energy, Elsevier, vol. 297(C).
    20. Tongu, Daiki & Obara, Shin'ya, 2024. "Formation temperature range expansion and energy storage properties of CO2 hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    21. Amin, Sakib & Jamasb, Tooraj & Llorca, Manuel & Marsiliani, Laura & Renström, Thomas I., 2022. "Decarbonisation policies and energy price reforms in Bangladesh," Energy Policy, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.