IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007321.html
   My bibliography  Save this article

Low-carbon economic dispatch strategy for integrated power system based on the substitution effect of carbon tax and carbon trading

Author

Listed:
  • Ouyang, Tiancheng
  • Li, Yinxuan
  • Xie, Shutao
  • Wang, Chengchao
  • Mo, Chunlan

Abstract

As the introduction of carbon peak and carbon neutrality, the intensity of carbon regulation is growing. The power system, as the main body of carbon emission, will face the constraints of compound carbon reduction policy. To address this issue, a low-carbon economic dispatch strategy for integrated power system based on the substitution effect of carbon tax and carbon trading is proposed to improve the economic and environmental joint benefits. Firstly, facing the volatility characteristics of carbon trading price, Monte Carlo method is implemented to analyze the uncertainty of carbon trading price. Next, the renewable energy power and electricity load are forecast by long short-term memory method. Subsequently, the gray wolves algorithm is imposed to optimize the dispatch model and obtain the optimal dispatch plan. The comparative analysis reveals that the carbon emission and dynamic payback period of the optimized integrated power system are 4.37 × 106 t and 10.06 years, which are reduced 1.67 × 105 t and 0.3 years compared with the conventional power system. Besides, the economic analysis demonstrates that the substitution effect can decrease the unit cost of carbon emission by 1.03 USD/t. Finally, the comparative analysis manifests that the proposed dispatch model can effectively boost the economic and environmental joint benefits for the integrated power system.

Suggested Citation

  • Ouyang, Tiancheng & Li, Yinxuan & Xie, Shutao & Wang, Chengchao & Mo, Chunlan, 2024. "Low-carbon economic dispatch strategy for integrated power system based on the substitution effect of carbon tax and carbon trading," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007321
    DOI: 10.1016/j.energy.2024.130960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Conefrey & John D. Fitz Gerald & Laura Malaguzzi Valeri & Richard S.J. Tol, 2013. "The impact of a carbon tax on economic growth and carbon dioxide emissions in Ireland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(7), pages 934-952, September.
    2. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    3. Wang, Yihan & Wen, Zongguo & Lv, Xiaojun & Zhu, Junming, 2023. "The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target," Applied Energy, Elsevier, vol. 337(C).
    4. Qian, Tong & Tang, Wenhu & Wu, Qinghua, 2020. "A fully decentralized dual consensus method for carbon trading power dispatch with wind power," Energy, Elsevier, vol. 203(C).
    5. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    6. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    7. Li, Yiman & Peng, Tian & Zhang, Chu & Sun, Wei & Hua, Lei & Ji, Chunlei & Muhammad Shahzad, Nazir, 2022. "Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory," Renewable Energy, Elsevier, vol. 196(C), pages 1115-1126.
    8. Qin, Peijia & Tan, Xianlin & Huang, Youbin & Pan, Mingming & Ouyang, Tiancheng, 2023. "Two-stage robust optimal scheduling framework applied for microgrids: Combined energy recovery and forecast," Renewable Energy, Elsevier, vol. 214(C), pages 290-306.
    9. Khosravi, Soheil & Hossainpour, Siamak & Farajollahi, Hossein & Abolzadeh, Nemat, 2022. "Integration of a coal fired power plant with calcium looping CO2 capture and concentrated solar power generation: Energy, exergy and economic analysis," Energy, Elsevier, vol. 240(C).
    10. Dong, Huijuan & Dai, Hancheng & Geng, Yong & Fujita, Tsuyoshi & Liu, Zhe & Xie, Yang & Wu, Rui & Fujii, Minoru & Masui, Toshihiko & Tang, Liang, 2017. "Exploring impact of carbon tax on China’s CO2 reductions and provincial disparities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 596-603.
    11. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xiaoxun & Hu, Ming & Xue, Jinfei & Li, Yuxuan & Han, Zhonghe & Gao, Xiaoxia & Wang, Yu & Bao, Linlin, 2024. "Research on multi-time scale integrated energy scheduling optimization considering carbon constraints," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    2. Zhao, Baining & Qian, Tong & Li, Weiwei & Xin, Yanli & Zhao, Wei & Lin, Zekang & Tang, Wenhu & Jin, Xin & Cao, Wangzhang & Pan, Tingzhe, 2024. "Fast distributed co-optimization of electricity and natural gas systems hedging against wind fluctuation and uncertainty," Energy, Elsevier, vol. 298(C).
    3. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    4. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    5. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    6. Keane, Claire & Walsh, John R. & Callan, Tim & Savage, Michael, 2012. "Property Tax in Ireland: Key Choices," Papers EC11, Economic and Social Research Institute (ESRI).
    7. Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
    8. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    10. Xu, Yingying & Salem, Sultan, 2021. "Explosive behaviors in Chinese carbon markets: are there price bubbles in eight pilots?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    12. Khojaste Effatpanah, Saeed & Rahbari, Hamid Reza & Ahmadi, Mohammad H. & Farzaneh, Ali, 2023. "Green hydrogen production and utilization in a novel SOFC/GT-based zero-carbon cogeneration system: A thermodynamic evaluation," Renewable Energy, Elsevier, vol. 219(P2).
    13. John FitzGerald, 2012. "The Irish Economy Today: Albatross or Phoenix?," The World Economy, Wiley Blackwell, vol. 35(10), pages 1239-1255, October.
    14. Miao Fu & Ling Wang & Taozi Xu, 2019. "The Assessment of the Impacts of Carbon Taxation on Chinese Transport and Energy Sectors Based on a Computable General Equilibrium Model," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 7(4), pages 179-190, December.
    15. Wenwen Zhang & Shichun Xu & Zhengxia He & Basil Sharp & Bin Zhao & Shuxiao Wang, 2019. "Impacts of U.S. Carbon Tariffs on China’s Foreign Trade and Social Welfare," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    16. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    17. de Bruin, Kelly & Yakut, Aykut Mert, 2024. "Efficiency–equity trade-off in the Irish carbon tax: A CGE investigation of mixed revenue recycling schemes," Economic Modelling, Elsevier, vol. 134(C).
    18. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    19. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    20. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.