IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v32y2004i15p1679-1692.html
   My bibliography  Save this article

Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results

Author

Listed:
  • Miketa, Asami
  • Schrattenholzer, Leo

Abstract

No abstract is available for this item.

Suggested Citation

  • Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
  • Handle: RePEc:eee:enepol:v:32:y:2004:i:15:p:1679-1692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(03)00159-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    2. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    3. Nelson, Richard R, 1981. "Research on Productivity Growth and Productivity Differences: Dead Ends and New Departures," Journal of Economic Literature, American Economic Association, vol. 19(3), pages 1029-1064, September.
    4. Marvin B. Lieberman, 1984. "The Learning Curve and Pricing in the Chemical Processing Industries," RAND Journal of Economics, The RAND Corporation, vol. 15(2), pages 213-228, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
    2. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    3. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    4. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    5. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2009. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution Learning," Working Papers 2009-10, University of Alberta, Department of Economics.
    6. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    7. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
    8. Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
    9. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    10. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    11. Muller-Furstenberger, Georg & Stephan, Gunter, 2007. "Integrated assessment of global climate change with learning-by-doing and energy-related research and development," Energy Policy, Elsevier, vol. 35(11), pages 5298-5309, November.
    12. Gerlagh , Reyer & Kverndokk , Snorre & Rosendahl , Knut Einar, 2007. "Optimal Timing of Environmental Policy: Interaction Between Environmental Taxes and Innovation Externalities," Memorandum 26/2006, Oslo University, Department of Economics.
    13. Fischer, Carolyn & Newell, Richard G., 2005. "Environmental and Technology Policies for Climate Change and Renewable Energy," Discussion Papers 10789, Resources for the Future.
    14. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    15. Harashima, Taiji, 2012. "A Theory of Intelligence and Total Factor Productivity: Value Added Reflects the Fruits of Fluid Intelligence," MPRA Paper 43151, University Library of Munich, Germany.
    16. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    17. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2008. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution and Learning," IDEI Working Papers 52, Institut d'Économie Industrielle (IDEI), Toulouse.
    18. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    19. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    20. Bramoulle, Yann & Olson, Lars J., 2002. "Pollution Abatement Under Learning By Doing With Heterogeneous Costs," Working Papers 28583, University of Maryland, Department of Agricultural and Resource Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:32:y:2004:i:15:p:1679-1692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.