IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224021595.html
   My bibliography  Save this article

A bi-level model for coal power decarbonization via biomass co-firing considering CO2 emission trading system

Author

Listed:
  • Huang, Qian
  • Feng, Qing

Abstract

Faced with the challenges posed by the Paris Agreement targets, biomass co-firing offers an efficient measure to decarbonize coal-fired power generation. Although economic burden of biomass co-firing has severely limited the large-scale application, effective CO2 emission trading system has the capability to subsidize and incentivize. Existing studies related to biomass co-firing under CO2 emission trading system fail to consider multiple decision makers and uncertain decision-making environment. To address these limitations, this paper proposes a bi-level model for coal power decarbonization via biomass co-firing considering CO2 emission trading system in an uncertain decision-making environment. It considers the interactive relationship between multiple decision makers. The upper-level model focuses on the formulation of CO2 emission trading system, and the lower-level model decides biomass co-firing and emission reduction. Fuzzy set theory is employed to describe the uncertain parameters and convert them into exact values. To calculate the model, a bi-level interactive method based on satisfactory solution is developed. A case study is conducted to illustrate the effectiveness and practicality of the proposed model. Results show that the price of initial quotas fluctuates between 38.01 and 48.7 CNY/tonne, and the lowest carbon intensity is 0.741 kg/kWh. Management recommendations are provided to support CO2 emission reduction.

Suggested Citation

  • Huang, Qian & Feng, Qing, 2024. "A bi-level model for coal power decarbonization via biomass co-firing considering CO2 emission trading system," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021595
    DOI: 10.1016/j.energy.2024.132385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. d'Aspremont, Claude & Jacquemin, Alexis, 1988. "Cooperative and Noncooperative R&D in Duopoly with Spillovers," American Economic Review, American Economic Association, vol. 78(5), pages 1133-1137, December.
    2. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    3. Mu, Lin & Li, Tong & Wang, Zhen & Shang, Yan & Yin, Hongchao, 2021. "Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal," Energy, Elsevier, vol. 234(C).
    4. Peng, Qiao & Liu, Weilong & Zhang, Yong & Zeng, Shihong & Graham, Byron, 2023. "Generation planning for power companies with hybrid production technologies under multiple renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Mohd Yahya, Nur Syahira & Ng, Lik Yin & Andiappan, Viknesh, 2021. "Optimisation and planning of biomass supply chain for new and existing power plants based on carbon reduction targets," Energy, Elsevier, vol. 237(C).
    6. Tsupari, Eemeli & Arponen, Timo & Hankalin, Ville & Kärki, Janne & Kouri, Sampo, 2017. "Feasibility comparison of bioenergy and CO2 capture and storage in a large combined heat, power and cooling system," Energy, Elsevier, vol. 139(C), pages 1040-1051.
    7. Tan, Zhizhou & Zeng, Xianhai & Lin, Boqiang, 2023. "How do multiple policy incentives influence investors’ decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?," Energy, Elsevier, vol. 278(PB).
    8. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    9. Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
    10. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    11. Roni, Mohammad S. & Chowdhury, Sudipta & Mamun, Saleh & Marufuzzaman, Mohammad & Lein, William & Johnson, Samuel, 2017. "Biomass co-firing technology with policies, challenges, and opportunities: A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1089-1101.
    12. Wei Peng & Fabian Wagner & M. V. Ramana & Haibo Zhai & Mitchell J. Small & Carole Dalin & Xin Zhang & Denise L. Mauzerall, 2018. "Managing China’s coal power plants to address multiple environmental objectives," Nature Sustainability, Nature, vol. 1(11), pages 693-701, November.
    13. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "EU Carbon Emissions Market Development and Its Impact on Penetration of Renewables in the Power Sector," Energies, MDPI, vol. 12(15), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
    2. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    3. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    4. Chen, Chunxiang & Li, Bingjie & He, Lihui & Wei, Guangsheng & Qin, Shuo, 2024. "Slagging tendency analysis and evaluation of biomass and coal during co-firing," Energy, Elsevier, vol. 305(C).
    5. Qiao, Sen & Guo, Zi Xin & Tao, Zhang & Ren, Zheng Yu, 2023. "Analyzing the network structure of risk transmission among renewable, non-renewable energy and carbon markets," Renewable Energy, Elsevier, vol. 209(C), pages 206-217.
    6. Grunfeld, Leo A., 2003. "Meet me halfway but don't rush: absorptive capacity and strategic R&D investment revisited," International Journal of Industrial Organization, Elsevier, vol. 21(8), pages 1091-1109, October.
    7. Prokop, Jacek & Karbowski, Adam, 2013. "R&D cooperation and industry cartelization," Economics Discussion Papers 2013-41, Kiel Institute for the World Economy (IfW Kiel).
    8. Jérôme Dollinger & Ana Mauleon & Vincent Vannetelbosch, 2024. "R &d and market sharing agreements," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(3), pages 877-922, November.
    9. Cassiman, Bruno & Perez-Castrillo, David & Veugelers, Reinhilde, 2002. "Endogenizing know-how flows through the nature of R&D investments," International Journal of Industrial Organization, Elsevier, vol. 20(6), pages 775-799, June.
    10. Frey, Rainer & Hussinger, Katrin, 2006. "The role of technology in M&As: a firm-level comparison of cross-border and domestic deals," Discussion Paper Series 1: Economic Studies 2006,45, Deutsche Bundesbank.
    11. Bertrand, Olivier & Zuniga, Pluvia, 2006. "R&D and M&A: Are cross-border M&A different? An investigation on OECD countries," International Journal of Industrial Organization, Elsevier, vol. 24(2), pages 401-423, March.
    12. Levy, Nadav, 2012. "Technology sharing and tacit collusion," International Journal of Industrial Organization, Elsevier, vol. 30(2), pages 204-216.
    13. Rajeev K. Goel, 2023. "Seek foreign funds or technology? Relative impacts of different spillover modes on innovation," The Journal of Technology Transfer, Springer, vol. 48(4), pages 1466-1488, August.
    14. Long, Jianjun & Wang, Fenglian, 2024. "Complexity of a two-stage R&D game within a cluster supply chain considering vertical R&D spillovers, effective information, and government subsidies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 606-621.
    15. Banal-Estañol, Albert & Duso, Tomaso & Seldeslachts, Jo & Szücs, Florian, 2022. "R&D Spillovers through RJV Cooperation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 51(4), pages 1-10.
    16. Colombo, Massimo G. & Garrone, Paola, 1998. "Common carriers' entry into multimedia services," Information Economics and Policy, Elsevier, vol. 10(1), pages 77-105, March.
    17. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    18. Joanna Poyago-Theotoky & Ben Ferrett, "undated". "Horizontal Agreements and R&D Complementarities: Merger versus RJV," CRIEFF Discussion Papers 1201, Centre for Research into Industry, Enterprise, Finance and the Firm.
    19. Michelle Sovinsky Goeree & Jeroen Hinloopen, 2005. "Cooperation in the Classroom: Experimenting with Research Joint Ventures," General Economics and Teaching 0503005, University Library of Munich, Germany.
    20. Haraguchi, Junichi & Matsumura, Toshihiro, 2017. "Firms' Costs, Profits, Entries, and Innovation under Optimal Privatization Policy," MPRA Paper 80927, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.