IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221015346.html
   My bibliography  Save this article

Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal

Author

Listed:
  • Mu, Lin
  • Li, Tong
  • Wang, Zhen
  • Shang, Yan
  • Yin, Hongchao

Abstract

In this study, bituminous coal and two aquatic biomasses, Ulva lactuca and Hydrilla verticillate, were selected as the raw materials for studying the ash slagging behavior. Furthermore, Ulva lactuca was pretreated by washing with water and acid; the influence of pretreatment on ash transformation was subsequently studied. Co-firing tests were performed in a drop tube furnace and the SO2 content in the flue gas was determined using a flue gas analyzer. The chemical compositions and mineral phase properties of the collected ash were studied using several analytical techniques, including ICP, XRF, SEM-EDS, and XRD, as well as thermochemical software Factsage 7.2. The results indicated that the most extreme agglomeration of coal co-fired with Ulva lactuca was due to the increased content of alkali metals, especially K. Pretreatment can effectively reduce the slagging trend of co-fired ash. Acid washing had a higher removal rate of S and alkali and alkaline earth metals but did not show a lower slagging tendency when co-firing with coal. The SO2 emissions during co-firing were less than the value calculated by linear interpolation but much higher than the SO2 emissions when coal was burned alone.

Suggested Citation

  • Mu, Lin & Li, Tong & Wang, Zhen & Shang, Yan & Yin, Hongchao, 2021. "Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015346
    DOI: 10.1016/j.energy.2021.121286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    2. Emmanouil Karampinis & Panagiotis Grammelis & Michalis Agraniotis & Ioannis Violidakis & Emmanuel Kakaras, 2014. "Co-firing of biomass with coal in thermal power plants: technology schemes, impacts, and future perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 384-399, July.
    3. Chen, Chunxiang & Huang, Yuting & Qin, Songheng & Huang, Dengchang & Bu, Xiaoyan & Huang, Haozhong, 2020. "Slagging tendency estimation of aquatic microalgae and comparison with terrestrial biomass and waste," Energy, Elsevier, vol. 194(C).
    4. Yao, Xiwen & Zhou, Haodong & Xu, Kaili & Chen, Shoukun & Ge, Ji & Xu, Qingwei, 2020. "Systematic study on ash transformation behaviour and thermal kinetic characteristics during co-firing of biomass with high ratios of bituminous coal," Renewable Energy, Elsevier, vol. 147(P1), pages 1453-1468.
    5. Sun, Jin & Zhao, Bingtao & Su, Yaxin, 2019. "Advanced control of NO emission from algal biomass combustion using loaded iron-based additives," Energy, Elsevier, vol. 185(C), pages 229-238.
    6. Namkung, Hueon & Lee, Young-Joo & Park, Ju-Hyoung & Song, Gyu-Seob & Choi, Jong Won & Kim, Joeng-Geun & Park, Se-Joon & Park, Joo Chang & Kim, Hyung-Taek & Choi, Young-Chan, 2019. "Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiyan & Liu, Yanxing & Cao, Yuhao & Li, Zhengyuan & Hou, Jiachen & Gou, Xiang, 2023. "Parametric study and optimization of MEA-based carbon capture for a coal and biomass co-firing power plant," Renewable Energy, Elsevier, vol. 205(C), pages 838-850.
    2. Liu, Zhongyi & Jin, Jing & Zheng, Liangqian & Zhang, Ruipu & Dong, Bo & Liang, Guowei & Zhai, Zhongyuan, 2023. "Adhesion strength of straw biomass ash: Effect of dolomite additive," Energy, Elsevier, vol. 262(PA).
    3. Zheng, Liangqian & Jin, Jing & Zhang, Ruipu & Liu, Zhongyi & Zhang, Li, 2023. "Understanding the effect of dolomite additive on corrosion characteristics of straw biomass ash through experiment study and molecular dynamics calculations," Energy, Elsevier, vol. 271(C).
    4. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    5. Zhang, Wenqi & Chen, Jianbiao & Fang, Hua & Zhang, Guoxu & Zhu, Zhibing & Xu, Wenhao & Mu, Lin & Zhu, Yuezhao, 2022. "Simulation on co-gasification of bituminous coal and industrial sludge in a downdraft fixed bed gasifier coupling with sensible heat recovery, and potential application in sludge-to-energy," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hariana, & Ghazidin, Hafizh & Putra, Hanafi Prida & Darmawan, Arif & Prabowo, & Hilmawan, Edi & Aziz, Muhammad, 2023. "The effects of additives on deposit formation during co-firing of high-sodium coal with high-potassium and -chlorine biomass," Energy, Elsevier, vol. 271(C).
    2. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    3. Tabakaev, Roman & Ibraeva, Kanipa & Kan, Victor & Dubinin, Yury & Rudmin, Maksim & Yazykov, Nikolay & Zavorin, Alexander, 2020. "The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue," Energy, Elsevier, vol. 196(C).
    4. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    5. Liu, Zhongyi & Jin, Jing & Zheng, Liangqian & Zhang, Ruipu & Dong, Bo & Liang, Guowei & Zhai, Zhongyuan, 2023. "Adhesion strength of straw biomass ash: Effect of dolomite additive," Energy, Elsevier, vol. 262(PA).
    6. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    7. Yi Zhang & Guanmin Zhang & Min Wei & Zhenqiang Gao & Maocheng Tian & Fang He, 2019. "Comparisons of Acid and Water Solubilities of Rice Straw Ash Together with Its Major Ash-Forming Elements at Different Ashing Temperatures: An Experimental Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    8. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    9. Karol Król & Dorota Nowak-Woźny, 2021. "Application of the Mechanical and Pressure Drop Tests to Determine the Sintering Temperature of Coal and Biomass Ash," Energies, MDPI, vol. 14(4), pages 1-14, February.
    10. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    11. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    13. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    14. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    15. Long, Xiaofei & Li, Jianbo & Wang, Hongjian & Liang, Yintang & Lu, Xiaofeng & Zhang, Dongke, 2023. "The morphological and mineralogical characteristics and thermal conductivity of ash deposits in a 220 MW CFBB firing Zhundong lignite," Energy, Elsevier, vol. 263(PB).
    16. Haili Liu & Xu Zhang & Qingchao Hong, 2021. "Emission Characteristics of Pollution Gases from the Combustion of Food Waste," Energies, MDPI, vol. 14(19), pages 1-11, October.
    17. Sher, Farooq & Smječanin, Narcisa & Khan, Muhammad Kashif & Shabbir, Imran & Ali, Salman & Hatshan, Mohammad Rafe & Ul Hai, Irfan, 2024. "Agglomeration behaviour of various biomass fuels under different air staging conditions in fluidised bed technology for renewable energy applications," Renewable Energy, Elsevier, vol. 227(C).
    18. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    19. Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Hu, Wanhe & Liang, Fang & Xiang, Hongzhong & Zhang, Jian & Yang, Xiaomeng & Zhang, Tao & Mi, Bingbing & Liu, Zhijia, 2018. "Investigating co-firing characteristics of coal and masson pine," Renewable Energy, Elsevier, vol. 126(C), pages 563-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.