Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131377
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
- Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
- Hu, Shen & Zhao, Daoli & Sun, Weipeng & Liu, Yuanyuan & Ma, Chenyuan, 2023. "Investigation on galloping piezoelectric energy harvester considering the surface roughness in low velocity water flow," Energy, Elsevier, vol. 262(PB).
- Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
- Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
- Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
- Zhao, Dan & Ji, Chenzhen & Teo, C. & Li, Shihuai, 2014. "Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air," Energy, Elsevier, vol. 74(C), pages 99-108.
- Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
- Viet, N.V. & Wang, Q., 2018. "Ocean wave energy pitching harvester with a frequency tuning capability," Energy, Elsevier, vol. 162(C), pages 603-617.
- Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
- Li, Mingxue & Zhang, Yufeng & Li, Kexin & Zhang, Yiwen & Xu, Kaixuan & Liu, Xiaoqiang & Zhong, Shaoxuan & Cao, Jiamu, 2022. "Self-powered wireless sensor system for water monitoring based on low-frequency electromagnetic-pendulum energy harvester," Energy, Elsevier, vol. 251(C).
- He, Lipeng & Wang, Shuangjian & Zheng, Xiaotian & Liu, Lei & Tian, Xiaochao & Sun, Baoyu, 2022. "Research-based on a low-frequency non-contact magnetic coupling piezoelectric energy harvester," Energy, Elsevier, vol. 258(C).
- Siriyothai, Patcharakon & Kittichaikarn, Chawalit, 2023. "Performance enhancement of a galloping-based energy harvester with different groove depths on square bluff body," Renewable Energy, Elsevier, vol. 210(C), pages 148-158.
- Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
- He, Kai & Vinod, Ashwin & Banerjee, Arindam, 2022. "Enhancement of energy capture by flow induced motion of a circular cylinder using passive turbulence control: Decoupling strip thickness and roughness effects," Renewable Energy, Elsevier, vol. 200(C), pages 283-293.
- Akbaş, Halil & Bilgen, Bilge, 2017. "An integrated fuzzy QFD and TOPSIS methodology for choosing the ideal gas fuel at WWTPs," Energy, Elsevier, vol. 125(C), pages 484-497.
- Li, Zhao & Luo, Zujiang & Wang, Yan & Fan, Guanyu & Zhang, Jianmang, 2022. "Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method," Renewable Energy, Elsevier, vol. 184(C), pages 564-576.
- Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).
- Tian, Haigang & Shan, Xiaobiao & Li, Xia & Wang, Junlei, 2023. "Enhanced airfoil-based flutter piezoelectric energy harvester via coupling magnetic force," Applied Energy, Elsevier, vol. 340(C).
- Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O. & Wu, J. & Shahvaghar-Asl, S., 2020. "Marine hydrokinetic energy harvesting performance of diamond and square oscillators in tandem arrangements," Energy, Elsevier, vol. 202(C).
- Wang, Junlei & Tang, Lihua & Zhao, Liya & Zhang, Zhien, 2019. "Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies," Energy, Elsevier, vol. 172(C), pages 1066-1078.
- Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
- Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
- Li, Huaijun & Bernitsas, Christopher C. & Congpuong, Nipit & Bernitsas, Michael M. & Sun, Hai, 2024. "Experimental investigation on synergistic flow-induced oscillation of three rough tandem-cylinders in hydrokinetic energy conversion," Applied Energy, Elsevier, vol. 359(C).
- Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
- Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
- Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Ashrafipour, H., 2024. "Impacts of hard marine growth on 2DoF VIV-based piezoelectric energy harvesting," Renewable Energy, Elsevier, vol. 231(C).
- Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
- Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
- Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
- Zhou, Zhiyong & Cao, Di & Huang, Haobo & Qin, Weiyang & Du, Wenfeng & Zhu, Pei, 2024. "Biomimetic swallowtail V-shaped attachments for enhanced low-speed wind energy harvesting by a galloping piezoelectric energy harvester," Energy, Elsevier, vol. 304(C).
- Ying Wu & Zhi Cheng & Ryley McConkey & Fue-Sang Lien & Eugene Yee, 2022. "Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects," Energies, MDPI, vol. 15(22), pages 1-63, November.
- Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
- Sun, Wan & Wang, Yiheng & Liu, Yang & Su, Bo & Guo, Tong & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Seok, Jongwon, 2024. "Navigating the future of flow-induced vibration-based piezoelectric energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
- Lian, Jijian & Ran, Danjie & Yan, Xiang & Liu, Fang & Shao, Nan & Wang, Xiaoqun & Yang, Xu, 2023. "Hydrokinetic energy harvesting from flow-induced motion of oscillators with different combined sections," Energy, Elsevier, vol. 269(C).
- Jijian Lian & Zhichuan Wu & Shuai Yao & Xiang Yan & Xiaoqun Wang & Zhaolin Jia & Yan Long & Nan Shao & Defeng Yang & Xinyi Li, 2022. "Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem," Energies, MDPI, vol. 15(21), pages 1-20, November.
- Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
- Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
- Tian, Haigang & Shan, Xiaobiao & Sui, Guangdong & Xie, Tao, 2022. "Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments," Energy, Elsevier, vol. 238(PB).
- Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).
- Xu, Yifei & Xian, Tongrui & Chen, Chen & Wang, Guosen & Wang, Mengdi & Shi, Weijie, 2024. "Mathematical modeling and parameter optimization of a stacked piezoelectric energy harvester based on water pressure pulsation," Energy, Elsevier, vol. 292(C).
More about this item
Keywords
Energy harvester; Optimal design; Flow-induced vibration; VIV-Galloping coupling; Passive turbulence control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011502. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.