IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp564-576.html
   My bibliography  Save this article

Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method

Author

Listed:
  • Li, Zhao
  • Luo, Zujiang
  • Wang, Yan
  • Fan, Guanyu
  • Zhang, Jianmang

Abstract

Shallow geothermal energy suitability map presents the potential for implementation in a region. The potential for implementation depends on hydrogeology, geotechnical, geology environment, and geothermal characteristics. Plenty of scholars evaluate shallow geothermal energy by the algorithm combined Analytic Hierarchy Process and Index Overlap. But Analytic Hierarchy Process and Index Overlap, as knowledge driven methods, rely on the experts' experience. This research presents a data driven algorithm based on Entropy Weight Method and TOPSIS Method. The weights are calculated by the Entropy Weight Method and assigned to the TOPSIS model. The closeness coefficient could be calculated by TOPSIS model. The suitability potential is analysed by comparing the closeness coefficient. The algorithm is accomplished by coding a program using Matlab. The algorithm is also applied to Nantong, China. Depending on the principle of ground source heat pump system, the suitability evaluation system of the open loop system and the closed loop system are established, respectively. Hydrogeology, geotechnical, geothermal, and geology environmental investigations are carried out to obtain the measured data and parameters for suitability analysis. The suitability maps are drawn in according with closeness coefficient. The algorithm is able to overcome the subjectivity of experts' experience. Compared with knowledge driven methods, the proposed algorithm tends to compare the relative potential in a region, rather than assess whether the site is suitable for SGE implementation. Consequently, it is more suitable for selecting the best field-site.

Suggested Citation

  • Li, Zhao & Luo, Zujiang & Wang, Yan & Fan, Guanyu & Zhang, Jianmang, 2022. "Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method," Renewable Energy, Elsevier, vol. 184(C), pages 564-576.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:564-576
    DOI: 10.1016/j.renene.2021.11.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121017031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casasso, Alessandro & Sethi, Rajandrea, 2016. "G.POT: A quantitative method for the assessment and mapping of the shallow geothermal potential," Energy, Elsevier, vol. 106(C), pages 765-773.
    2. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    3. Sadeghi, Behnam & Khalajmasoumi, Masoumeh, 2015. "A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 818-831.
    4. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
    5. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    6. Buonocore, Elvira & Vanoli, Laura & Carotenuto, Alberto & Ulgiati, Sergio, 2015. "Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy," Energy, Elsevier, vol. 86(C), pages 476-487.
    7. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    8. Casasso, Alessandro & Sethi, Rajandrea, 2017. "Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy)," Renewable Energy, Elsevier, vol. 102(PB), pages 306-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Hui & Li, Xiaojuan & Lu, Hongna & Tong, Ling & Kang, Shaozhong, 2023. "Crop acreage planning for economy- resource- efficiency coordination: Grey information entropy based uncertain model," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    3. Yang, Tianle & Li, Fangmin & Du, Min & Huang, Miao & Li, Yinuo, 2023. "Impacts of alternative energy production innovation on reducing CO2 emissions: Evidence from China," Energy, Elsevier, vol. 268(C).
    4. Huibing Cheng & Shanshui Zheng & Jianghong Feng, 2022. "A Fuzzy Multi-Criteria Method for Sustainable Ferry Operator Selection: A Case Study," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    5. Venkatraman Indrajayanthan & Nalin Kant Mohanty & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2022. "Investigation on Current and Prospective Energy Transition Scenarios in Indian Landscape Using Integrated SWOT-MCDA Methodology," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    6. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    7. Moghaddam, Hossein Azizi & Shorabeh, Saman Nadizadeh, 2022. "Designing and implementing a location-based model to identify areas suitable for multi-renewable energy development for supplying electricity to agricultural wells," Renewable Energy, Elsevier, vol. 200(C), pages 1251-1264.
    8. Zhang, Dong & Zhang, Rui & Zhang, Bin & Zheng, Yu & An, Zhoujian, 2023. "Environment dominated evaluation modeling and collocation optimization of a distributed energy system based on solar and biomass energy," Renewable Energy, Elsevier, vol. 202(C), pages 1226-1240.
    9. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    10. Zhang, Mingming & Pang, Zhichao & Liu, Liyun & Yang, Zikun & Zhou, Dequn, 2024. "Risk assessment of China's overseas energy investments considering the response ability to major risk events: A case study of COVID-19," Energy, Elsevier, vol. 288(C).
    11. Xian Huang & Wentong Ji & Xiaorong Ye & Zhangjie Feng, 2023. "Configuration Planning of Expressway Self-Consistent Energy System Based on Multi-Objective Chance-Constrained Programming," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    12. Lin, Boqiang & Wang, You, 2024. "How does natural disasters affect China agricultural economic growth?," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    2. Ramos-Escudero, Adela & García-Cascales, M. Socorro & Cuevas, Jose M. & Sanner, Burkhard & Urchueguía, Javier F., 2021. "Spatial analysis of indicators affecting the exploitation of shallow geothermal energy at European scale," Renewable Energy, Elsevier, vol. 167(C), pages 266-281.
    3. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    4. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    5. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    6. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    7. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    8. Walch, Alina & Li, Xiang & Chambers, Jonathan & Mohajeri, Nahid & Yilmaz, Selin & Patel, Martin & Scartezzini, Jean-Louis, 2022. "Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios," Energy, Elsevier, vol. 244(PB).
    9. Korhonen, Kimmo & Markó, Ábel & Bischoff, Alan & Szijártó, Márk & Mádl-Szőnyi, Judit, 2023. "Infinite borehole field model—a new approach to estimate the shallow geothermal potential of urban areas applied to central Budapest, Hungary," Renewable Energy, Elsevier, vol. 208(C), pages 263-274.
    10. Elisa Heim & Marius Laska & Ralf Becker & Norbert Klitzsch, 2022. "Estimating the Subsurface Thermal Conductivity and Its Uncertainty for Shallow Geothermal Energy Use—A Workflow and Geoportal Based on Publicly Available Data," Energies, MDPI, vol. 15(10), pages 1-19, May.
    11. Marco Taussi & Walter Borghi & Michele Gliaschera & Alberto Renzulli, 2021. "Defining the Shallow Geothermal Heat-Exchange Potential for a Lower Fluvial Plain of the Central Apennines: The Metauro Valley (Marche Region, Italy)," Energies, MDPI, vol. 14(3), pages 1-18, February.
    12. Alcaraz, Mar & Vives, Luis & Vázquez-Suñé, Enric, 2017. "The T-I-GER method: A graphical alternative to support the design and management of shallow geothermal energy exploitations at the metropolitan scale," Renewable Energy, Elsevier, vol. 109(C), pages 213-221.
    13. Casasso, Alessandro & Sethi, Rajandrea, 2017. "Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy)," Renewable Energy, Elsevier, vol. 102(PB), pages 306-315.
    14. Puppala, Harish & Arora, Manoj Kumar & Garlapati, Nagababu & Bheemaraju, Amarnath, 2023. "GIS-MCDM based framework to evaluate site suitability and CO2 mitigation potential of earth-air-heat exchanger: A case study," Renewable Energy, Elsevier, vol. 216(C).
    15. Luca Alberti & Adriana Angelotti & Matteo Antelmi & Ivana La Licata, 2017. "A Numerical Study on the Impact of Grouting Material on Borehole Heat Exchangers Performance in Aquifers," Energies, MDPI, vol. 10(5), pages 1-15, May.
    16. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    17. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    18. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
    19. Luo, Jin & Qiao, Yu & Xiang, Wei & Rohn, Joachim, 2020. "Measurements and analysis of the thermal properties of a sedimentary succession in Yangtze plate in China," Renewable Energy, Elsevier, vol. 147(P2), pages 2708-2723.
    20. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:564-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.