IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1453-1468.html
   My bibliography  Save this article

Systematic study on ash transformation behaviour and thermal kinetic characteristics during co-firing of biomass with high ratios of bituminous coal

Author

Listed:
  • Yao, Xiwen
  • Zhou, Haodong
  • Xu, Kaili
  • Chen, Shoukun
  • Ge, Ji
  • Xu, Qingwei

Abstract

Co-firing of biomass and coal represents a sustainable and renewable energy option that ensures reduction of air pollutants and disposal of biomass residues. However, it adds much complexity to ash transformation. Here, the ash transformation mechanism and kinetic characteristics of Neimongol coal (NM), soybean straw (SS), and their blends were examined from the aspects of ash composition, morphology, mineralogy and thermodynamics. The results indicated that for a given temperature, the content of basic oxides in SS ash (SSA) was larger than that in NM ash (NMA), indicating a higher tendency of the former to slag. As temperature increased, molten floccules were found in SSA, and the surfaces consisted mainly of sylvine. For the ash from blends, the molten and solidified zones on agglomerate surface featured high contents of K, Si and O, indicating a layer of K-bearing silicates. With increasing SS content, the total weight loss and maximum weight loss rates decreased while their exothermic peaks shifted to a higher zone, and the ash agglomeration degree was enhanced. The K2CO3 addition significantly aggravated slagging. For all ashes, the peak temperatures corresponding to weight loss rates matched those of exothermic segments. The calculated kinetic results accurately predicted the ash transformation process.

Suggested Citation

  • Yao, Xiwen & Zhou, Haodong & Xu, Kaili & Chen, Shoukun & Ge, Ji & Xu, Qingwei, 2020. "Systematic study on ash transformation behaviour and thermal kinetic characteristics during co-firing of biomass with high ratios of bituminous coal," Renewable Energy, Elsevier, vol. 147(P1), pages 1453-1468.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1453-1468
    DOI: 10.1016/j.renene.2019.09.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Maraver, Angela & Perez-Jimenez, Jose A. & Serrano-Bernardo, Francisco & Zamorano, Montserrat, 2015. "Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees," Renewable Energy, Elsevier, vol. 83(C), pages 897-904.
    2. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    3. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
    4. Narayanan, K.V. & Natarajan, E., 2007. "Experimental studies on cofiring of coal and biomass blends in India," Renewable Energy, Elsevier, vol. 32(15), pages 2548-2558.
    5. Yao, Xiwen & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust," Renewable Energy, Elsevier, vol. 145(C), pages 835-846.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lang & Ren, Shan & Yang, Jian & Jiang, Donghai & Guo, Junjiang & Pu, Yubao & Meng, Xianpiao, 2022. "Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue," Energy, Elsevier, vol. 251(C).
    2. Yao, Xiwen & Zhao, Zhicheng & Xu, Kaili & Zhou, Haodong, 2020. "Determination of ash forming characteristics and fouling/slagging behaviours during gasification of masson pine in a fixed-bed gasifier," Renewable Energy, Elsevier, vol. 160(C), pages 1420-1430.
    3. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    4. Dorokhov, V.V. & Nyashina, G.S. & Romanov, D.S. & Strizhak, P.A., 2024. "Combustion and mechanical properties of pellets from biomass and industrial waste," Renewable Energy, Elsevier, vol. 228(C).
    5. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    6. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    7. Mu, Lin & Li, Tong & Wang, Zhen & Shang, Yan & Yin, Hongchao, 2021. "Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal," Energy, Elsevier, vol. 234(C).
    8. Yao, Xiwen & Zhao, Zhicheng & Chen, Shoukun & Zhou, Haodong & Xu, Kaili, 2020. "Migration and transformation behaviours of ash residues from a typical fixed-bed gasification station for biomass syngas production in China," Energy, Elsevier, vol. 201(C).
    9. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    10. Zhu, Hongqing & Liao, Qi & Hu, Lintao & Xie, Linhao & Qu, Baolin & Gao, Rongxiang, 2023. "Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications," Renewable Energy, Elsevier, vol. 207(C), pages 275-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laphirattanakul, Ponepen & Charoensuk, Jarruwat & Turakarn, Chinnapat & Kaewchompoo, Chatchalerm & Suksam, Niwat, 2020. "Development of pulverized biomass combustor with a pre-combustion chamber," Energy, Elsevier, vol. 208(C).
    2. Hu, Wanhe & Liang, Fang & Xiang, Hongzhong & Zhang, Jian & Yang, Xiaomeng & Zhang, Tao & Mi, Bingbing & Liu, Zhijia, 2018. "Investigating co-firing characteristics of coal and masson pine," Renewable Energy, Elsevier, vol. 126(C), pages 563-572.
    3. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    4. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    5. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    6. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    7. Tabet, F. & Gökalp, I., 2015. "Review on CFD based models for co-firing coal and biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1101-1114.
    8. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    9. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    10. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    11. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    12. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    13. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    14. Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
    15. Mao, Guozhu & Liu, Xi & Du, Huibin & Zuo, Jian & Wang, Linyuan, 2015. "Way forward for alternative energy research: A bibliometric analysis during 1994–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 276-286.
    16. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.
    17. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    18. Hu, Wanhe & Feng, Zixing & Yang, Jianfei & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures," Energy, Elsevier, vol. 226(C).
    19. Wang, Qi & Wang, Enlu & Li, Kai & Husnain, Naveed & Li, Deli, 2020. "Synergistic effects and kinetics analysis of biochar with semi-coke during CO2 co-gasification," Energy, Elsevier, vol. 191(C).
    20. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1453-1468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.