IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics036054422401795x.html
   My bibliography  Save this article

Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression

Author

Listed:
  • Wang, Lei
  • Wang, Xinyu
  • Zhao, Zhongchao

Abstract

Balancing electricity supply and demand is crucial for China's energy transition and the stability of its electricity market. Accurate prediction of mid-term electricity demand plays a vital role in mitigating supply-demand imbalances, enabling policymakers and power plants to make informed decisions. This study proposes a novel hybrid model, EEMD-SE-PSO-SVR, to forecast mid-term electricity demand in China. The model integrates ensemble empirical mode decomposition (EEMD) with sample entropy (SE) for data preprocessing, particle swarm optimization (PSO) for parameter optimization, and support vector regression (SVR) for prediction. Our findings demonstrate that the EEMD-SE-PSO-SVR model outperforms traditional benchmark models, achieving a 54.49 % reduction in mean absolute percentage error (MAPE) compared to the SVR model. The model's performance is significantly enhanced by EEMD-SE, which effectively addresses the non-stationarity of electricity demand data. Moreover, the analysis highlights the strong influence of economic factors, followed by the seasonal factors and energy structure, underscoring their importance in accurately forecasting electricity demand. These findings contribute valuable insights for improving the accuracy of mid-term electricity demand forecasts and support the development of carbon-neutral and peak-carbon policies in China.

Suggested Citation

  • Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s036054422401795x
    DOI: 10.1016/j.energy.2024.132021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401795X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s036054422401795x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.